numpy.split#
- numpy.split(ary,indices_or_sections,axis=0)[source]#
Split an array into multiple sub-arrays as views intoary.
- Parameters:
- aryndarray
Array to be divided into sub-arrays.
- indices_or_sectionsint or 1-D array
Ifindices_or_sections is an integer, N, the array will be dividedinto N equal arrays alongaxis. If such a split is not possible,an error is raised.
Ifindices_or_sections is a 1-D array of sorted integers, the entriesindicate where alongaxis the array is split. For example,
[2,3]would, foraxis=0, result inary[:2]
ary[2:3]
ary[3:]
If an index exceeds the dimension of the array alongaxis,an empty sub-array is returned correspondingly.
- axisint, optional
The axis along which to split, default is 0.
- Returns:
- sub-arrayslist of ndarrays
A list of sub-arrays as views intoary.
- Raises:
- ValueError
Ifindices_or_sections is given as an integer, buta split does not result in equal division.
See also
array_splitSplit an array into multiple sub-arrays of equal or near-equal size. Does not raise an exception if an equal division cannot be made.
hsplitSplit array into multiple sub-arrays horizontally (column-wise).
vsplitSplit array into multiple sub-arrays vertically (row wise).
dsplitSplit array into multiple sub-arrays along the 3rd axis (depth).
concatenateJoin a sequence of arrays along an existing axis.
stackJoin a sequence of arrays along a new axis.
hstackStack arrays in sequence horizontally (column wise).
vstackStack arrays in sequence vertically (row wise).
dstackStack arrays in sequence depth wise (along third dimension).
Examples
>>>importnumpyasnp>>>x=np.arange(9.0)>>>np.split(x,3)[array([0., 1., 2.]), array([3., 4., 5.]), array([6., 7., 8.])]
>>>x=np.arange(8.0)>>>np.split(x,[3,5,6,10])[array([0., 1., 2.]), array([3., 4.]), array([5.]), array([6., 7.]), array([], dtype=float64)]