numpy.concat#
- numpy.concat((a1,a2,...),axis=0,out=None,dtype=None,casting="same_kind")#
Join a sequence of arrays along an existing axis.
- Parameters:
- a1, a2, …sequence of array_like
The arrays must have the same shape, except in the dimensioncorresponding toaxis (the first, by default).
- axisint, optional
The axis along which the arrays will be joined. If axis is None,arrays are flattened before use. Default is 0.
- outndarray, optional
If provided, the destination to place the result. The shape must becorrect, matching that of what concatenate would have returned if noout argument were specified.
- dtypestr or dtype
If provided, the destination array will have this dtype. Cannot beprovided together without.
New in version 1.20.0.
- casting{‘no’, ‘equiv’, ‘safe’, ‘same_kind’, ‘unsafe’}, optional
Controls what kind of data casting may occur. Defaults to ‘same_kind’.For a description of the options, please seecasting.
New in version 1.20.0.
- Returns:
- resndarray
The concatenated array.
See also
ma.concatenateConcatenate function that preserves input masks.
array_splitSplit an array into multiple sub-arrays of equal or near-equal size.
splitSplit array into a list of multiple sub-arrays of equal size.
hsplitSplit array into multiple sub-arrays horizontally (column wise).
vsplitSplit array into multiple sub-arrays vertically (row wise).
dsplitSplit array into multiple sub-arrays along the 3rd axis (depth).
stackStack a sequence of arrays along a new axis.
blockAssemble arrays from blocks.
hstackStack arrays in sequence horizontally (column wise).
vstackStack arrays in sequence vertically (row wise).
dstackStack arrays in sequence depth wise (along third dimension).
column_stackStack 1-D arrays as columns into a 2-D array.
Notes
When one or more of the arrays to be concatenated is a MaskedArray,this function will return a MaskedArray object instead of an ndarray,but the input masks arenot preserved. In cases where a MaskedArrayis expected as input, use the ma.concatenate function from the maskedarray module instead.
Examples
>>>importnumpyasnp>>>a=np.array([[1,2],[3,4]])>>>b=np.array([[5,6]])>>>np.concatenate((a,b),axis=0)array([[1, 2], [3, 4], [5, 6]])>>>np.concatenate((a,b.T),axis=1)array([[1, 2, 5], [3, 4, 6]])>>>np.concatenate((a,b),axis=None)array([1, 2, 3, 4, 5, 6])
This function will not preserve masking of MaskedArray inputs.
>>>a=np.ma.arange(3)>>>a[1]=np.ma.masked>>>b=np.arange(2,5)>>>amasked_array(data=[0, --, 2], mask=[False, True, False], fill_value=999999)>>>barray([2, 3, 4])>>>np.concatenate([a,b])masked_array(data=[0, 1, 2, 2, 3, 4], mask=False, fill_value=999999)>>>np.ma.concatenate([a,b])masked_array(data=[0, --, 2, 2, 3, 4], mask=[False, True, False, False, False, False], fill_value=999999)