class Regexp

Aregular expression (also called aregexp) is amatch pattern (also simply called apattern).

A common notation for a regexp uses enclosing slash characters:

/foo/

A regexp may be applied to atarget string; The part of the string (if any) that matches the pattern is called amatch, and may be saidto match:

re =/red/re.match?('redirect')# => true   # Match at beginning of target.re.match?('bored')# => true   # Match at end of target.re.match?('credit')# => true   # Match within target.re.match?('foo')# => false  # No match.

Regexp Uses

A regexp may be used:

Regexp Objects

A regexp object has:

Creating a Regexp

A regular expression may be created with:

Methodmatch

Each of the methodsRegexp#match,String#match, andSymbol#match returns aMatchData object if a match was found,nil otherwise; each also setsglobal variables:

'food'.match(/foo/)# => #<MatchData "foo">'food'.match(/bar/)# => nil

Operator=~

Each of the operatorsRegexp#=~,String#=~, andSymbol#=~ returns an integer offset if a match was found,nil otherwise; each also setsglobal variables:

/bar/=~'foo bar'# => 4'foo bar'=~/bar/# => 4/baz/=~'foo bar'# => nil

Methodmatch?

Each of the methodsRegexp#match?,String#match?, andSymbol#match? returnstrue if a match was found,false otherwise; none setsglobal variables:

'food'.match?(/foo/)# => true'food'.match?(/bar/)# => false

Global Variables

Certain regexp-oriented methods assign values to global variables:

The affected global variables are:

These variables, except for$~, are shorthands for methods of$~. SeeGlobal variables equivalence atMatchData.

Examples:

# Matched string, but no matched groups.'foo bar bar baz'.match('bar')$~# => #<MatchData "bar">$&# => "bar"$`# => "foo "$'# => " bar baz"$+# => nil$1# => nil# Matched groups./s(\w{2}).*(c)/.match('haystack')$~# => #<MatchData "stac" 1:"ta" 2:"c">$&# => "stac"$`# => "hay"$'# => "k"$+# => "c"$1# => "ta"$2# => "c"$3# => nil# No match.'foo'.match('bar')$~# => nil$&# => nil$`# => nil$'# => nil$+# => nil$1# => nil

Note thatRegexp#match?,String#match?, andSymbol#match? do not set global variables.

Sources

As seen above, the simplest regexp uses a literal expression as its source:

re =/foo/# => /foo/re.match('food')# => #<MatchData "foo">re.match('good')# => nil

A rich collection of availablesubexpressions gives the regexp great power and flexibility:

Special Characters

Regexp special characters, calledmetacharacters, have special meanings in certain contexts; depending on the context, these are sometimes metacharacters:

. ? - + * ^ \ | $ ( ) [ ] { }

To match a metacharacter literally, backslash-escape it:

# Matches one or more 'o' characters./o+/.match('foo')# => #<MatchData "oo"># Would match 'o+'./o\+/.match('foo')# => nil

To match a backslash literally, backslash-escape it:

/\./.match('\.')# => #<MatchData ".">/\\./.match('\.')# => #<MatchData "\\.">

MethodRegexp.escape returns an escaped string:

Regexp.escape('.?-+*^\|$()[]{}')# => "\\.\\?\\-\\+\\*\\^\\\\\\|\\$\\(\\)\\[\\]\\{\\}"

Source Literals

The source literal largely behaves like a double-quoted string; seeDouble-Quoted String Literals.

In particular, a source literal may contain interpolated expressions:

s ='foo'# => "foo"/#{s}/# => /foo//#{s.capitalize}/# => /Foo//#{2 + 2}/# => /4/

There are differences between an ordinary string literal and a source literal; seeShorthand Character Classes.

Character Classes

Acharacter class is delimited by square brackets; it specifies that certain characters match at a given point in the target string:

# This character class will match any vowel.re =/B[aeiou]rd/re.match('Bird')# => #<MatchData "Bird">re.match('Bard')# => #<MatchData "Bard">re.match('Byrd')# => nil

A character class may contain hyphen characters to specify ranges of characters:

# These regexps have the same effect./[abcdef]/.match('foo')# => #<MatchData "f">/[a-f]/.match('foo')# => #<MatchData "f">/[a-cd-f]/.match('foo')# => #<MatchData "f">

When the first character of a character class is a caret (^), the sense of the class is inverted: it matches any characterexcept those specified.

/[^a-eg-z]/.match('f')# => #<MatchData "f">

A character class may contain another character class. By itself this isn’t useful because[a-z[0-9]] describes the same set as[a-z0-9].

However, character classes also support the&& operator, which performs set intersection on its arguments. The two can be combined as follows:

/[a-w&&[^c-g]z]/# ([a-w] AND ([^c-g] OR z))

This is equivalent to:

/[abh-w]/

Shorthand Character Classes

Each of the following metacharacters serves as a shorthand for a character class:

Anchors

An anchor is a metasequence that matches a zero-width position between characters in the target string.

For a subexpression with no anchor, matching may begin anywhere in the target string:

/real/.match('surrealist')# => #<MatchData "real">

For a subexpression with an anchor, matching must begin at the matched anchor.

Boundary Anchors

Each of these anchors matches a boundary:

Lookaround Anchors

Lookahead anchors:

Lookbehind anchors:

The pattern below uses positive lookahead and positive lookbehind to match text appearing in tags without including the tags in the match:

/(?<=<b>)\w+(?=<\/b>)/.match("Fortune favors the <b>bold</b>.")# => #<MatchData "bold">

The pattern in lookbehind must be fixed-width. But top-level alternatives can be of various lengths. ex. (?<=a|bc) is OK. (?<=aaa(?:b|cd)) is not allowed.

Match-Reset Anchor

Alternation

The vertical bar metacharacter (|) may be used within parentheses to express alternation: two or more subexpressions any of which may match the target string.

Two alternatives:

re =/(a|b)/re.match('foo')# => nilre.match('bar')# => #<MatchData "b" 1:"b">

Four alternatives:

re =/(a|b|c|d)/re.match('shazam')# => #<MatchData "a" 1:"a">re.match('cold')# => #<MatchData "c" 1:"c">

Each alternative is a subexpression, and may be composed of other subexpressions:

re =/([a-c]|[x-z])/re.match('bar')# => #<MatchData "b" 1:"b">re.match('ooz')# => #<MatchData "z" 1:"z">

MethodRegexp.union provides a convenient way to construct a regexp with alternatives.

Quantifiers

A simple regexp matches one character:

/\w/.match('Hello')# => #<MatchData "H">

An addedquantifier specifies how many matches are required or allowed:

Greedy, Lazy, or Possessive Matching

Quantifier matching may be greedy, lazy, or possessive:

More:

Groups and Captures

A simple regexp has (at most) one match:

re =/\d\d\d\d-\d\d-\d\d/re.match('1943-02-04')# => #<MatchData "1943-02-04">re.match('1943-02-04').size# => 1re.match('foo')# => nil

Adding one or more pairs of parentheses,(subexpression), definesgroups, which may result in multiple matched substrings, calledcaptures:

re =/(\d\d\d\d)-(\d\d)-(\d\d)/re.match('1943-02-04')# => #<MatchData "1943-02-04" 1:"1943" 2:"02" 3:"04">re.match('1943-02-04').size# => 4

The first capture is the entire matched string; the other captures are the matched substrings from the groups.

A group may have aquantifier:

re =/July 4(th)?/re.match('July 4')# => #<MatchData "July 4" 1:nil>re.match('July 4th')# => #<MatchData "July 4th" 1:"th">re =/(foo)*/re.match('')# => #<MatchData "" 1:nil>re.match('foo')# => #<MatchData "foo" 1:"foo">re.match('foofoo')# => #<MatchData "foofoo" 1:"foo">re =/(foo)+/re.match('')# => nilre.match('foo')# => #<MatchData "foo" 1:"foo">re.match('foofoo')# => #<MatchData "foofoo" 1:"foo">

The returned MatchData object gives access to the matched substrings:

re =/(\d\d\d\d)-(\d\d)-(\d\d)/md =re.match('1943-02-04')# => #<MatchData "1943-02-04" 1:"1943" 2:"02" 3:"04">md[0]# => "1943-02-04"md[1]# => "1943"md[2]# => "02"md[3]# => "04"

Non-Capturing Groups

A group may be made non-capturing; it is still a group (and, for example, can have a quantifier), but its matching substring is not included among the captures.

A non-capturing group begins with?: (inside the parentheses):

# Don't capture the year.re =/(?:\d\d\d\d)-(\d\d)-(\d\d)/md =re.match('1943-02-04')# => #<MatchData "1943-02-04" 1:"02" 2:"04">

Backreferences

A group match may also be referenced within the regexp itself; such a reference is called abackreference:

/[csh](..) [csh]\1 in/.match('The cat sat in the hat')# => #<MatchData "cat sat in" 1:"at">

This table shows how each subexpression in the regexp above matches a substring in the target string:

| Subexpression in Regexp   | Matching Substring in Target String ||---------------------------|-------------------------------------||       First '[csh]'       |            Character 'c'            ||          '(..)'           |        First substring 'at'         ||      First space ' '      |      First space character ' '      ||       Second '[csh]'      |            Character 's'            || '\1' (backreference 'at') |        Second substring 'at'        ||           ' in'           |            Substring ' in'          |

A regexp may contain any number of groups:

Named Captures

As seen above, a capture can be referred to by its number. A capture can also have a name, prefixed as?<name> or?'name', and the name (symbolized) may be used as an index inMatchData[]:

md =/\$(?<dollars>\d+)\.(?'cents'\d+)/.match("$3.67")# => #<MatchData "$3.67" dollars:"3" cents:"67">md[:dollars]# => "3"md[:cents]# => "67"# The capture numbers are still valid.md[2]# => "67"

When a regexp contains a named capture, there are no unnamed captures:

/\$(?<dollars>\d+)\.(\d+)/.match("$3.67")# => #<MatchData "$3.67" dollars:"3">

A named group may be backreferenced as\k<name>:

/(?<vowel>[aeiou]).\k<vowel>.\k<vowel>/.match('ototomy')# => #<MatchData "ototo" vowel:"o">

When (and only when) a regexp contains named capture groups and appears before the=~ operator, the captured substrings are assigned to local variables with corresponding names:

/\$(?<dollars>\d+)\.(?<cents>\d+)/=~'$3.67'dollars# => "3"cents# => "67"

MethodRegexp#named_captures returns a hash of the capture names and substrings; methodRegexp#names returns an array of the capture names.

Atomic Grouping

A group may be madeatomic with(?>subexpression).

This causes the subexpression to be matched independently of the rest of the expression, so that the matched substring becomes fixed for the remainder of the match, unless the entire subexpression must be abandoned and subsequently revisited.

In this waysubexpression is treated as a non-divisible whole. Atomic grouping is typically used to optimise patterns to prevent needless backtracking .

Example (without atomic grouping):

/".*"/.match('"Quote"')# => #<MatchData "\"Quote\"">

Analysis:

  1. The leading subexpression" in the pattern matches the first character" in the target string.

  2. The next subexpression.* matches the next substringQuote" (including the trailing double-quote).

  3. Now there is nothing left in the target string to match the trailing subexpression" in the pattern; this would cause the overall match to fail.

  4. The matched substring is backtracked by one position:Quote.

  5. The final subexpression" now matches the final substring", and the overall match succeeds.

If subexpression.* is grouped atomically, the backtracking is disabled, and the overall match fails:

/"(?>.*)"/.match('"Quote"')# => nil

Atomic grouping can affect performance; seeAtomic Group.

Subexpression Calls

As seen above, a backreference number (\n) or name (\k<name>) gives access to a capturedsubstring; the corresponding regexpsubexpression may also be accessed, via the number (\gn) or name (\g<name>):

/\A(?<paren>\(\g<paren>*\))*\z/.match('(())')# ^1#      ^2#           ^3#                 ^4#      ^5#           ^6#                      ^7#                       ^8#                       ^9#                           ^10

The pattern:

  1. Matches at the beginning of the string, i.e. before the first character.

  2. Enters a named groupparen.

  3. Matches the first character in the string,'('.

  4. Calls theparen group again, i.e. recurses back to the second step.

  5. Re-enters theparen group.

  6. Matches the second character in the string,'('.

  7. Attempts to callparen a third time, but fails because doing so would prevent an overall successful match.

  8. Matches the third character in the string,')'; marks the end of the second recursive call

  9. Matches the fourth character in the string,')'.

  10. Matches the end of the string.

SeeSubexpression calls.

Conditionals

The conditional construct takes the form(?(cond)yes|no), where:

Examples:

re =/\A(foo)?(?(1)(T)|(F))\z/re.match('fooT')# => #<MatchData "fooT" 1:"foo" 2:"T" 3:nil>re.match('F')# => #<MatchData "F" 1:nil 2:nil 3:"F">re.match('fooF')# => nilre.match('T')# => nilre =/\A(?<xyzzy>foo)?(?(<xyzzy>)(T)|(F))\z/re.match('fooT')# => #<MatchData "fooT" xyzzy:"foo">re.match('F')# => #<MatchData "F" xyzzy:nil>re.match('fooF')# => nilre.match('T')# => nil

Absence Operator

The absence operator is a special group that matches anything which doesnot match the contained subexpressions.

/(?~real)/.match('surrealist')# => #<MatchData "surrea">/(?~real)ist/.match('surrealist')# => #<MatchData "ealist">/sur(?~real)ist/.match('surrealist')# => nil

Unicode

Unicode Properties

The/\p{property_name}/ construct (with lowercasep) matches characters using a Unicode property name, much like a character class; propertyAlpha specifies alphabetic characters:

/\p{Alpha}/.match('a')# => #<MatchData "a">/\p{Alpha}/.match('1')# => nil

A property can be inverted by prefixing the name with a caret character (^):

/\p{^Alpha}/.match('1')# => #<MatchData "1">/\p{^Alpha}/.match('a')# => nil

Or by using\P (uppercaseP):

/\P{Alpha}/.match('1')# => #<MatchData "1">/\P{Alpha}/.match('a')# => nil

SeeUnicode Properties for regexps based on the numerous properties.

Some commonly-used properties correspond to POSIX bracket expressions:

These are also commonly used:

Unicode Character Categories

A Unicode character category name:

Examples:

/\p{lu}/# => /\p{lu}//\p{LU}/# => /\p{LU}//\p{Uppercase Letter}/# => /\p{Uppercase Letter}//\p{Uppercase_Letter}/# => /\p{Uppercase_Letter}//\p{UPPERCASE-LETTER}/# => /\p{UPPERCASE-LETTER}/

Below are the Unicode character category abbreviations and names. Enumerations of characters in each category are at the links.

Letters:

Marks:

Numbers:

Punctuation:

Unicode Scripts and Blocks

Among the Unicode properties are:

POSIX Bracket Expressions

A POSIXbracket expression is also similar to a character class. These expressions provide a portable alternative to the above, with the added benefit of encompassing non-ASCII characters:

The POSIX bracket expressions:

Ruby also supports these (non-POSIX) bracket expressions:

Comments

A comment may be included in a regexp pattern using the(?#comment) construct, wherecomment is a substring that is to be ignored. arbitrary text ignored by the regexp engine:

/foo(?#Ignore me)bar/.match('foobar')# => #<MatchData "foobar">

The comment may not include an unescaped terminator character.

See alsoExtended Mode.

Modes

Each of these modifiers sets a mode for the regexp:

Any, all, or none of these may be applied.

Modifiersi,m, andx may be applied to subexpressions:

Example:

re =/(?i)te(?-i)st/re.match('test')# => #<MatchData "test">re.match('TEst')# => #<MatchData "TEst">re.match('TEST')# => nilre.match('teST')# => nilre =/t(?i:e)st/re.match('test')# => #<MatchData "test">re.match('tEst')# => #<MatchData "tEst">re.match('tEST')# => nil

MethodRegexp#options returns an integer whose value showing the settings for case-insensitivity mode, multiline mode, and extended mode.

Case-Insensitive Mode

By default, a regexp is case-sensitive:

/foo/.match('FOO')# => nil

Modifieri enables case-insensitive mode:

/foo/i.match('FOO')# => #<MatchData "FOO">

MethodRegexp#casefold? returns whether the mode is case-insensitive.

Multiline Mode

The multiline-mode in Ruby is what is commonly called a “dot-all mode”:

Unlike other languages, the modifierm does not affect the anchors^ and$. These anchors always match at line-boundaries in Ruby.

Extended Mode

Modifierx enables extended mode, which means that:

In extended mode, whitespace and comments may be used to form a self-documented regexp.

Regexp not in extended mode (matches some Roman numerals):

pattern ='^M{0,3}(CM|CD|D?C{0,3})(XC|XL|L?X{0,3})(IX|IV|V?I{0,3})$'re =/#{pattern}/re.match('MCMXLIII')# => #<MatchData "MCMXLIII" 1:"CM" 2:"XL" 3:"III">

Regexp in extended mode:

pattern =<<-EOT  ^                   # beginning of string  M{0,3}              # thousands - 0 to 3 Ms  (CM|CD|D?C{0,3})    # hundreds - 900 (CM), 400 (CD), 0-300 (0 to 3 Cs),                      #            or 500-800 (D, followed by 0 to 3 Cs)  (XC|XL|L?X{0,3})    # tens - 90 (XC), 40 (XL), 0-30 (0 to 3 Xs),                      #        or 50-80 (L, followed by 0 to 3 Xs)  (IX|IV|V?I{0,3})    # ones - 9 (IX), 4 (IV), 0-3 (0 to 3 Is),                      #        or 5-8 (V, followed by 0 to 3 Is)  $                   # end of stringEOTre =/#{pattern}/xre.match('MCMXLIII')# => #<MatchData "MCMXLIII" 1:"CM" 2:"XL" 3:"III">

Interpolation Mode

Modifiero means that the first time a literal regexp with interpolations is encountered, the generatedRegexp object is saved and used for all future evaluations of that literal regexp. Without modifiero, the generatedRegexp is not saved, so each evaluation of the literal regexp generates a newRegexp object.

Without modifiero:

defletters;sleep5;/[A-Z][a-z]/;endwords =%w[abc def xyz]start =Time.nowwords.each {|word|word.match(/\A[#{letters}]+\z/) }Time.now-start# => 15.0174892

With modifiero:

start =Time.nowwords.each {|word|word.match(/\A[#{letters}]+\z/o) }Time.now-start# => 5.0010866

Note that if the literal regexp does not have interpolations, theo behavior is the default.

Encodings

By default, a regexp with only US-ASCII characters has US-ASCII encoding:

re =/foo/re.source.encoding# => #<Encoding:US-ASCII>re.encoding# => #<Encoding:US-ASCII>

A regular expression containing non-US-ASCII characters is assumed to use the source encoding. This can be overridden with one of the following modifiers.

A regexp can be matched against a target string when either:

If a match between incompatible encodings is attempted anEncoding::CompatibilityError exception is raised.

Example:

re =eval("# encoding: ISO-8859-1\n/foo\\xff?/")re.encoding# => #<Encoding:ISO-8859-1>re=~"foo".encode("UTF-8")# => 0re=~"foo\u0100"# Raises Encoding::CompatibilityError

The encoding may be explicitly fixed by includingRegexp::FIXEDENCODING in the second argument forRegexp.new:

# Regexp with encoding ISO-8859-1.re =Regexp.new("a".force_encoding('iso-8859-1'),Regexp::FIXEDENCODING)re.encoding# => #<Encoding:ISO-8859-1># Target string with encoding UTF-8.s ="a\u3042"s.encoding# => #<Encoding:UTF-8>re.match(s)# Raises Encoding::CompatibilityError.

Timeouts

When either a regexp source or a target string comes from untrusted input, malicious values could become a denial-of-service attack; to prevent such an attack, it is wise to set a timeout.

Regexp has two timeout values:

When regexp.timeout isnil, the timeout “falls through” toRegexp.timeout; when regexp.timeout is non-nil, that value controls timing out:

| regexp.timeout Value | Regexp.timeout Value |            Result           ||----------------------|----------------------|-----------------------------||         nil          |          nil         |       Never times out.      ||         nil          |         Float        | Times out in Float seconds. ||        Float         |          Any         | Times out in Float seconds. |

Optimization

For certain values of the pattern and target string, matching time can grow polynomially or exponentially in relation to the input size; the potential vulnerability arising from this is theregular expression denial-of-service (ReDoS) attack.

Regexp matching can apply an optimization to prevent ReDoS attacks. When the optimization is applied, matching time increases linearly (not polynomially or exponentially) in relation to the input size, and a ReDoS attack is not possible.

This optimization is applied if the pattern meets these criteria:

You can use methodRegexp.linear_time? to determine whether a pattern meets these criteria:

Regexp.linear_time?(/a*/)# => trueRegexp.linear_time?('a*')# => trueRegexp.linear_time?(/(a*)\1/)# => false

However, an untrusted source may not be safe even if the method returnstrue, because the optimization uses memoization (which may invoke large memory consumption).

References

Read:

Explore, test:

Constants

EXTENDED

seeRegexp.options andRegexp.new

FIXEDENCODING

seeRegexp.options andRegexp.new

IGNORECASE

seeRegexp.options andRegexp.new

MULTILINE

seeRegexp.options andRegexp.new

NOENCODING

seeRegexp.options andRegexp.new

Public Class Methods

Alias forRegexp.new

Source
static VALUErb_reg_s_quote(VALUE c, VALUE str){    return rb_reg_quote(reg_operand(str, TRUE));}

Returns a new string that escapes any characters that have special meaning in a regular expression:

s =Regexp.escape('\*?{}.')# => "\\\\\\*\\?\\{\\}\\."

For any strings, this call returns aMatchData object:

r =Regexp.new(Regexp.escape(s))# => /\\\\\\\*\\\?\\\{\\\}\\\./r.match(s)# => #<MatchData "\\\\\\*\\?\\{\\}\\.">
Source
# File ext/json/lib/json/add/regexp.rb, line 9defself.json_create(object)new(object['s'],object['o'])end

Seeas_json.

Source
static VALUErb_reg_s_last_match(int argc, VALUE *argv, VALUE _){    if (rb_check_arity(argc, 0, 1) == 1) {        VALUE match = rb_backref_get();        int n;        if (NIL_P(match)) return Qnil;        n = match_backref_number(match, argv[0]);        return rb_reg_nth_match(n, match);    }    return match_getter();}

With no argument, returns the value of$~, which is the result of the most recent pattern match (seeRegexp global variables):

/c(.)t/=~'cat'# => 0Regexp.last_match# => #<MatchData "cat" 1:"a">/a/=~'foo'# => nilRegexp.last_match# => nil

With non-negative integer argumentn, returns the _n_th field in the matchdata, if any, or nil if none:

/c(.)t/=~'cat'# => 0Regexp.last_match(0)# => "cat"Regexp.last_match(1)# => "a"Regexp.last_match(2)# => nil

With negative integer argumentn, counts backwards from the last field:

Regexp.last_match(-1)# => "a"

With string or symbol argumentname, returns the string value for the named capture, if any:

/(?<lhs>\w+)\s*=\s*(?<rhs>\w+)/=~'var = val'Regexp.last_match# => #<MatchData "var = val" lhs:"var"rhs:"val">Regexp.last_match(:lhs)# => "var"Regexp.last_match('rhs')# => "val"Regexp.last_match('foo')# Raises IndexError.
Source
static VALUErb_reg_s_linear_time_p(int argc, VALUE *argv, VALUE self){    struct reg_init_args args;    VALUE re = reg_extract_args(argc, argv, &args);    if (NIL_P(re)) {        re = reg_init_args(rb_reg_alloc(), args.str, args.enc, args.flags);    }    return RBOOL(onig_check_linear_time(RREGEXP_PTR(re)));}

Returnstrue if matching againstre can be done in linear time to the input string.

Regexp.linear_time?(/re/)# => true

Note that this is a property of the ruby interpreter, not of the argument regular expression. Identical regexp can or cannot run in linear time depending on your ruby binary. Neither forward nor backward compatibility is guaranteed about the return value of this method. Our current algorithm is (*1) but this is subject to change in the future. Alternative implementations can also behave differently. They might always return false for everything.

(*1):doi.org/10.1109/SP40001.2021.00032

Source
static VALUErb_reg_initialize_m(int argc, VALUE *argv, VALUE self){    struct reg_init_args args;    VALUE re = reg_extract_args(argc, argv, &args);    if (NIL_P(re)) {        reg_init_args(self, args.str, args.enc, args.flags);    }    else {        reg_copy(self, re);    }    set_timeout(&RREGEXP_PTR(self)->timelimit, args.timeout);    return self;}

With argumentstring given, returns a new regexp with the given string and options:

r =Regexp.new('foo')# => /foo/r.source# => "foo"r.options# => 0

Optional argumentoptions is one of the following:

  • AString of options:

    Regexp.new('foo','i')# => /foo/iRegexp.new('foo','im')# => /foo/im
  • The bit-wise OR of one or more of the constantsRegexp::EXTENDED,Regexp::IGNORECASE,Regexp::MULTILINE, andRegexp::NOENCODING:

    Regexp.new('foo',Regexp::IGNORECASE)# => /foo/iRegexp.new('foo',Regexp::EXTENDED)# => /foo/xRegexp.new('foo',Regexp::MULTILINE)# => /foo/mRegexp.new('foo',Regexp::NOENCODING)# => /foo/nflags =Regexp::IGNORECASE|Regexp::EXTENDED|Regexp::MULTILINERegexp.new('foo',flags)# => /foo/mix
  • nil orfalse, which is ignored.

  • Any other truthy value, in which case the regexp will be case-insensitive.

If optional keyword argumenttimeout is given, its float value overrides the timeout interval for the class,Regexp.timeout. Ifnil is passed as +timeout, it uses the timeout interval for the class,Regexp.timeout.

With argumentregexp given, returns a new regexp. The source, options, timeout are the same asregexp.options andn_flag arguments are ineffective. The timeout can be overridden bytimeout keyword.

options =Regexp::MULTILINEr =Regexp.new('foo',options,timeout:1.1)# => /foo/mr2 =Regexp.new(r)# => /foo/mr2.timeout# => 1.1r3 =Regexp.new(r,timeout:3.14)# => /foo/mr3.timeout# => 3.14
Source
static VALUErb_reg_s_quote(VALUE c, VALUE str){    return rb_reg_quote(reg_operand(str, TRUE));}

Returns a new string that escapes any characters that have special meaning in a regular expression:

s =Regexp.escape('\*?{}.')# => "\\\\\\*\\?\\{\\}\\."

For any strings, this call returns aMatchData object:

r =Regexp.new(Regexp.escape(s))# => /\\\\\\\*\\\?\\\{\\\}\\\./r.match(s)# => #<MatchData "\\\\\\*\\?\\{\\}\\.">
Source
static VALUErb_reg_s_timeout_get(VALUE dummy){    double d = hrtime2double(rb_reg_match_time_limit);    if (d == 0.0) return Qnil;    return DBL2NUM(d);}

It returns the current default timeout interval forRegexp matching in second.nil means no default timeout configuration.

Source
static VALUErb_reg_s_timeout_set(VALUE dummy, VALUE timeout){    rb_ractor_ensure_main_ractor("can not access Regexp.timeout from non-main Ractors");    set_timeout(&rb_reg_match_time_limit, timeout);    return timeout;}

It sets the default timeout interval forRegexp matching in second.nil means no default timeout configuration. This configuration is process-global. If you want to set timeout for eachRegexp, usetimeout keyword forRegexp.new.

Regexp.timeout =1/^a*b?a*$/=~"a"*100000+"x"#=> regexp match timeout (RuntimeError)
Source
static VALUErb_reg_s_try_convert(VALUE dummy, VALUE re){    return rb_check_regexp_type(re);}

Returnsobject if it is a regexp:

Regexp.try_convert(/re/)# => /re/

Otherwise ifobject responds to:to_regexp, callsobject.to_regexp and returns the result.

Returnsnil ifobject does not respond to:to_regexp.

Regexp.try_convert('re')# => nil

Raises an exception unlessobject.to_regexp returns a regexp.

Source
static VALUErb_reg_s_union_m(VALUE self, VALUE args){    VALUE v;    if (RARRAY_LEN(args) == 1 &&        !NIL_P(v = rb_check_array_type(rb_ary_entry(args, 0)))) {        return rb_reg_s_union(self, v);    }    return rb_reg_s_union(self, args);}

Returns a new regexp that is the union of the given patterns:

r =Regexp.union(%w[cat dog])# => /cat|dog/r.match('cat')# => #<MatchData "cat">r.match('dog')# => #<MatchData "dog">r.match('cog')# => nil

For each pattern that is a string,Regexp.new(pattern) is used:

Regexp.union('penzance')# => /penzance/Regexp.union('a+b*c')# => /a\+b\*c/Regexp.union('skiing','sledding')# => /skiing|sledding/Regexp.union(['skiing','sledding'])# => /skiing|sledding/

For each pattern that is a regexp, it is used as is, including its flags:

Regexp.union(/foo/i,/bar/m,/baz/x)# => /(?i-mx:foo)|(?m-ix:bar)|(?x-mi:baz)/Regexp.union([/foo/i,/bar/m,/baz/x])# => /(?i-mx:foo)|(?m-ix:bar)|(?x-mi:baz)/

With no arguments, returns/(?!)/:

Regexp.union# => /(?!)/

If any regexp pattern contains captures, the behavior is unspecified.

Public Instance Methods

Returnstrue ifobject is another Regexp whose pattern, flags, and encoding are the same asself,false otherwise:

/foo/==Regexp.new('foo')# => true/foo/==/foo/i# => false/foo/==Regexp.new('food')# => false/foo/==Regexp.new("abc".force_encoding("euc-jp"))# => false
Alias for:eql?
Source
static VALUErb_reg_eqq(VALUE re, VALUE str){    long start;    str = reg_operand(str, FALSE);    if (NIL_P(str)) {        rb_backref_set(Qnil);        return Qfalse;    }    start = rb_reg_search(re, str, 0, 0);    return RBOOL(start >= 0);}

Returnstrue ifself finds a match instring:

/^[a-z]*$/==='HELLO'# => false/^[A-Z]*$/==='HELLO'# => true

This method is called in case statements:

s ='HELLO'caseswhen/\A[a-z]*\z/;print"Lower case\n"when/\A[A-Z]*\z/;print"Upper case\n"elseprint"Mixed case\n"end# => "Upper case"
Source
VALUErb_reg_match(VALUE re, VALUE str){    long pos = reg_match_pos(re, &str, 0, NULL);    if (pos < 0) return Qnil;    pos = rb_str_sublen(str, pos);    return LONG2FIX(pos);}

Returns the integer index (in characters) of the first match forself andstring, ornil if none; also sets theRegexp global variables:

/at/=~'input data'# => 7$~# => #<MatchData "at">/ax/=~'input data'# => nil$~# => nil

Assigns named captures to local variables of the same names if and only ifself:

Example:

/(?<lhs>\w+)\s*=\s*(?<rhs>\w+)/=~'  x = y  'plhs# => "x"prhs# => "y"

Assignsnil if not matched:

/(?<lhs>\w+)\s*=\s*(?<rhs>\w+)/=~'  x = 'plhs# => nilprhs# => nil

Does not make local variable assignments ifself is not a regexp literal:

r =/(?<foo>\w+)\s*=\s*(?<foo>\w+)/r=~'  x = y  'pfoo# Undefined local variablepbar# Undefined local variable

The assignment does not occur if the regexp is not at the left:

'  x = y  '=~/(?<foo>\w+)\s*=\s*(?<foo>\w+)/pfoo,foo# Undefined local variables

A regexp interpolation,#{}, also disables the assignment:

r =/(?<foo>\w+)//(?<foo>\w+)\s*=\s*#{r}/=~'x = y'pfoo# Undefined local variable
Source
VALUErb_reg_match2(VALUE re){    long start;    VALUE line = rb_lastline_get();    if (!RB_TYPE_P(line, T_STRING)) {        rb_backref_set(Qnil);        return Qnil;    }    start = rb_reg_search(re, line, 0, 0);    if (start < 0) {        return Qnil;    }    start = rb_str_sublen(line, start);    return LONG2FIX(start);}

Equivalent torxp =~ $_:

$_ ="input data"~/at/# => 7
Source
# File ext/json/lib/json/add/regexp.rb, line 28defas_json(*)  {JSON.create_id=>self.class.name,'o'=>options,'s'=>source,  }end

MethodsRegexp#as_json andRegexp.json_create may be used to serialize and deserialize a Regexp object; seeMarshal.

MethodRegexp#as_json serializesself, returning a 2-element hash representingself:

require'json/add/regexp'x =/foo/.as_json# => {"json_class"=>"Regexp", "o"=>0, "s"=>"foo"}

MethodJSON.create deserializes such a hash, returning a Regexp object:

Regexp.json_create(x)# => /foo/
Source
static VALUErb_reg_casefold_p(VALUE re){    rb_reg_check(re);    return RBOOL(RREGEXP_PTR(re)->options & ONIG_OPTION_IGNORECASE);}

Returnstrue if the case-insensitivity flag inself is set,false otherwise:

/a/.casefold?# => false/a/i.casefold?# => true/(?i:a)/.casefold?# => false
Source
VALUErb_obj_encoding(VALUE obj){    int idx = rb_enc_get_index(obj);    if (idx < 0) {        rb_raise(rb_eTypeError, "unknown encoding");    }    return rb_enc_from_encoding_index(idx & ENC_INDEX_MASK);}

Returns anEncoding object that represents the encoding ofself; seeEncodings.

Related: seeQuerying.

Source
Also aliased as:==
Source
static VALUErb_reg_fixed_encoding_p(VALUE re){    return RBOOL(FL_TEST(re, KCODE_FIXED));}

Returnsfalse ifself is applicable to a string with any ASCII-compatible encoding; otherwise returnstrue:

r =/a/# => /a/r.fixed_encoding?# => falser.match?("\u{6666} a")# => truer.match?("\xa1\xa2 a".force_encoding("euc-jp"))# => truer.match?("abc".force_encoding("euc-jp"))# => truer =/a/u# => /a/r.fixed_encoding?# => truer.match?("\u{6666} a")# => truer.match?("\xa1\xa2".force_encoding("euc-jp"))# Raises exception.r.match?("abc".force_encoding("euc-jp"))# => truer =/\u{6666}/# => /\u{6666}/r.fixed_encoding?# => truer.encoding# => #<Encoding:UTF-8>r.match?("\u{6666} a")# => truer.match?("\xa1\xa2".force_encoding("euc-jp"))# Raises exception.r.match?("abc".force_encoding("euc-jp"))# => false
Source
VALUErb_reg_hash(VALUE re){    st_index_t hashval = reg_hash(re);    return ST2FIX(hashval);}

Returns the integer hash value forself.

Related:Object#hash.

Source
static VALUErb_reg_inspect(VALUE re){    if (!RREGEXP_PTR(re) || !RREGEXP_SRC(re) || !RREGEXP_SRC_PTR(re)) {        return rb_any_to_s(re);    }    return rb_reg_desc(re);}

Returns a nicely-formatted string representation ofself:

/ab+c/ix.inspect# => "/ab+c/ix"

Related:Regexp#to_s.

Source
static VALUErb_reg_match_m(int argc, VALUE *argv, VALUE re){    VALUE result = Qnil, str, initpos;    long pos;    if (rb_scan_args(argc, argv, "11", &str, &initpos) == 2) {        pos = NUM2LONG(initpos);    }    else {        pos = 0;    }    pos = reg_match_pos(re, &str, pos, &result);    if (pos < 0) {        rb_backref_set(Qnil);        return Qnil;    }    rb_match_busy(result);    if (!NIL_P(result) && rb_block_given_p()) {        return rb_yield(result);    }    return result;}

With no block given, returns theMatchData object that describes the match, if any, ornil if none; the search begins at the given characteroffset instring:

/abra/.match('abracadabra')# => #<MatchData "abra">/abra/.match('abracadabra',4)# => #<MatchData "abra">/abra/.match('abracadabra',8)# => nil/abra/.match('abracadabra',800)# => nilstring ="\u{5d0 5d1 5e8 5d0}cadabra"/abra/.match(string,7)#=> #<MatchData "abra">/abra/.match(string,8)#=> nil/abra/.match(string.b,8)#=> #<MatchData "abra">

With a block given, calls the block if and only if a match is found; returns the block’s value:

/abra/.match('abracadabra') {|matchdata|pmatchdata }# => #<MatchData "abra">/abra/.match('abracadabra',4) {|matchdata|pmatchdata }# => #<MatchData "abra">/abra/.match('abracadabra',8) {|matchdata|pmatchdata }# => nil/abra/.match('abracadabra',8) {|marchdata|fail'Cannot happen' }# => nil

Output (from the first two blocks above):

#<MatchData "abra">#<MatchData "abra">/(.)(.)(.)/.match("abc")[2]# => "b"/(.)(.)/.match("abc",1)[2]# => "c"
Source
static VALUErb_reg_match_m_p(int argc, VALUE *argv, VALUE re){    long pos = rb_check_arity(argc, 1, 2) > 1 ? NUM2LONG(argv[1]) : 0;    return rb_reg_match_p(re, argv[0], pos);}

Returnstrue orfalse to indicate whether the regexp is matched or not without updating $~ and other related variables. If the second parameter is present, it specifies the position in the string to begin the search.

/R.../.match?("Ruby")# => true/R.../.match?("Ruby",1)# => false/P.../.match?("Ruby")# => false$&# => nil
Source
static VALUErb_reg_named_captures(VALUE re){    regex_t *reg = (rb_reg_check(re), RREGEXP_PTR(re));    VALUE hash = rb_hash_new_with_size(onig_number_of_names(reg));    onig_foreach_name(reg, reg_named_captures_iter, (void*)hash);    return hash;}

Returns a hash representing named captures ofself (seeNamed Captures):

  • Each key is the name of a named capture.

  • Each value is an array of integer indexes for that named capture.

Examples:

/(?<foo>.)(?<bar>.)/.named_captures# => {"foo"=>[1], "bar"=>[2]}/(?<foo>.)(?<foo>.)/.named_captures# => {"foo"=>[1, 2]}/(.)(.)/.named_captures# => {}
Source
static VALUErb_reg_names(VALUE re){    VALUE ary;    rb_reg_check(re);    ary = rb_ary_new_capa(onig_number_of_names(RREGEXP_PTR(re)));    onig_foreach_name(RREGEXP_PTR(re), reg_names_iter, (void*)ary);    return ary;}

Returns an array of names of captures (seeNamed Captures):

/(?<foo>.)(?<bar>.)(?<baz>.)/.names# => ["foo", "bar", "baz"]/(?<foo>.)(?<foo>.)/.names# => ["foo"]/(.)(.)/.names# => []
Source
static VALUErb_reg_options_m(VALUE re){    int options = rb_reg_options(re);    return INT2NUM(options);}

Returns an integer whose bits show the options set inself.

The option bits are:

Regexp::IGNORECASE# => 1Regexp::EXTENDED# => 2Regexp::MULTILINE# => 4

Examples:

/foo/.options# => 0/foo/i.options# => 1/foo/x.options# => 2/foo/m.options# => 4/foo/mix.options# => 7

Note that additional bits may be set in the returned integer; these are maintained internally inself, are ignored if passed toRegexp.new, and may be ignored by the caller:

Returns the set of bits corresponding to the options used when creating this regexp (seeRegexp::new for details). Note that additional bits may be set in the returned options: these are used internally by the regular expression code. These extra bits are ignored if the options are passed toRegexp::new:

r =/\xa1\xa2/e# => /\xa1\xa2/r.source# => "\\xa1\\xa2"r.options# => 16Regexp.new(r.source,r.options)# => /\xa1\xa2/
Source
static VALUErb_reg_source(VALUE re){    VALUE str;    rb_reg_check(re);    str = rb_str_dup(RREGEXP_SRC(re));    return str;}

Returns the original string ofself:

/ab+c/ix.source# => "ab+c"

Regexp escape sequences are retained:

/\x20\+/.source# => "\\x20\\+"

Lexer escape characters are not retained:

/\//.source# => "/"
Source
static VALUErb_reg_timeout_get(VALUE re){    rb_reg_check(re);    double d = hrtime2double(RREGEXP_PTR(re)->timelimit);    if (d == 0.0) return Qnil;    return DBL2NUM(d);}

It returns the timeout interval forRegexp matching in second.nil means no default timeout configuration.

This configuration is per-object. The global configuration set byRegexp.timeout= is ignored if per-object configuration is set.

re =Regexp.new("^a*b?a*$",timeout:1)re.timeout#=> 1.0re=~"a"*100000+"x"#=> regexp match timeout (RuntimeError)
Source
# File ext/json/lib/json/add/regexp.rb, line 45defto_json(*args)as_json.to_json(*args)end

Returns aJSON string representingself:

require'json/add/regexp'puts/foo/.to_json

Output:

{"json_class":"Regexp","o":0,"s":"foo"}
Source
static VALUErb_reg_to_s(VALUE re){    return rb_reg_str_with_term(re, '/');}

Returns a string showing the options and string ofself:

r0 =/ab+c/ixs0 =r0.to_s# => "(?ix-m:ab+c)"

The returned string may be used as an argument toRegexp.new, or as interpolated text for aRegexp interpolation:

r1 =Regexp.new(s0)# => /(?ix-m:ab+c)/r2 =/#{s0}/# => /(?ix-m:ab+c)/

Note thatr1 andr2 are not equal tor0 because their original strings are different:

r0==r1# => falser0.source# => "ab+c"r1.source# => "(?ix-m:ab+c)"

Related:Regexp#inspect.