class Numeric

Numeric is the class from which all higher-level numeric classes should inherit.

Numeric allows instantiation of heap-allocated objects. Other core numeric classes such asInteger are implemented as immediates, which means that eachInteger is a single immutable object which is always passed by value.

a =11.object_id==a.object_id#=> true

There can only ever be one instance of the integer1, for example. Ruby ensures this by preventing instantiation. If duplication is attempted, the same instance is returned.

Integer.new(1)#=> NoMethodError: undefined method `new' for Integer:Class1.dup#=> 11.object_id==1.dup.object_id#=> true

For this reason, Numeric should be used when defining other numeric classes.

Classes which inherit from Numeric must implementcoerce, which returns a two-memberArray containing an object that has been coerced into an instance of the new class andself (seecoerce).

Inheriting classes should also implement arithmetic operator methods (+,-,* and/) and the<=> operator (seeComparable). These methods may rely oncoerce to ensure interoperability with instances of other numeric classes.

classTally<Numericdefinitialize(string)@string =stringenddefto_s@stringenddefto_i@string.sizeenddefcoerce(other)    [self.class.new('|'*other.to_i),self]enddef<=>(other)to_i<=>other.to_ienddef+(other)self.class.new('|'* (to_i+other.to_i))enddef-(other)self.class.new('|'* (to_i-other.to_i))enddef*(other)self.class.new('|'* (to_i*other.to_i))enddef/(other)self.class.new('|'* (to_i/other.to_i))endendtally =Tally.new('||')putstally*2#=> "||||"putstally>1#=> true

What’s Here

First, what’s elsewhere. Class Numeric:

Here, class Numeric provides methods for:

Querying

Comparing

Converting

Other

Public Instance Methods

Source
static VALUEnum_modulo(VALUE x, VALUE y){    VALUE q = num_funcall1(x, id_div, y);    return rb_funcall(x, '-', 1,                      rb_funcall(y, '*', 1, q));}

Returnsself moduloother as a real number.

Of the Core and Standard Library classes, onlyRational uses this implementation.

ForRationalr and real numbern, these expressions are equivalent:

r%nr-n*(r/n).floorr.divmod(n)[1]

SeeNumeric#divmod.

Examples:

r =Rational(1,2)# => (1/2)r2 =Rational(2,3)# => (2/3)r%r2# => (1/2)r%2# => (1/2)r%2.0# => 0.5r =Rational(301,100)# => (301/100)r2 =Rational(7,5)# => (7/5)r%r2# => (21/100)r%-r2# => (-119/100)(-r)%r2# => (119/100)(-r)%-r2# => (-21/100)
Also aliased as:modulo
Source
# File numeric.rb, line 89def+@selfend

Returnsself.

Source
static VALUEnum_uminus(VALUE num){    VALUE zero;    zero = INT2FIX(0);    do_coerce(&zero, &num, TRUE);    return num_funcall1(zero, '-', num);}

Unary Minus—Returns the receiver, negated.

Source
static VALUEnum_cmp(VALUE x, VALUE y){    if (x == y) return INT2FIX(0);    return Qnil;}

Returns zero ifself is the same asother,nil otherwise.

No subclass in the Ruby Core or Standard Library uses this implementation.

Source
static VALUEnum_abs(VALUE num){    if (rb_num_negative_int_p(num)) {        return num_funcall0(num, idUMinus);    }    return num;}

Returns the absolute value ofself.

12.abs#=> 12(-34.56).abs#=> 34.56-34.56.abs#=> 34.56
Also aliased as:magnitude
Source
static VALUEnumeric_abs2(VALUE self){    return f_mul(self, self);}

Returns the square ofself.

Alias for:arg
Source
static VALUEnumeric_arg(VALUE self){    if (f_positive_p(self))        return INT2FIX(0);    return DBL2NUM(M_PI);}

Returns zero ifself is positive, Math::PI otherwise.

Also aliased as:angle,phase
Source
static VALUEnum_ceil(int argc, VALUE *argv, VALUE num){    return flo_ceil(argc, argv, rb_Float(num));}

Returns the smallest float or integer that is greater than or equal toself, as specified by the given ‘ndigits`, which must be aninteger-convertible object.

Equivalent toself.to_f.ceil(ndigits).

Related:floor,Float#ceil.

Source
static VALUEnum_clone(int argc, VALUE *argv, VALUE x){    return rb_immutable_obj_clone(argc, argv, x);}

Returnsself.

Raises an exception if the value forfreeze is neithertrue nornil.

Related:Numeric#dup.

Source
static VALUEnum_coerce(VALUE x, VALUE y){    if (CLASS_OF(x) == CLASS_OF(y))        return rb_assoc_new(y, x);    x = rb_Float(x);    y = rb_Float(y);    return rb_assoc_new(y, x);}

Returns a 2-element array containing two numeric elements, formed from the two operandsself andother, of a common compatible type.

Of the Core and Standard Library classes,Integer,Rational, andComplex use this implementation.

Examples:

i =2# => 2i.coerce(3)# => [3, 2]i.coerce(3.0)# => [3.0, 2.0]i.coerce(Rational(1,2))# => [0.5, 2.0]i.coerce(Complex(3,4))# Raises RangeError.r =Rational(5,2)# => (5/2)r.coerce(2)# => [(2/1), (5/2)]r.coerce(2.0)# => [2.0, 2.5]r.coerce(Rational(2,3))# => [(2/3), (5/2)]r.coerce(Complex(3,4))# => [(3+4i), ((5/2)+0i)]c =Complex(2,3)# => (2+3i)c.coerce(2)# => [(2+0i), (2+3i)]c.coerce(2.0)# => [(2.0+0i), (2+3i)]c.coerce(Rational(1,2))# => [((1/2)+0i), (2+3i)]c.coerce(Complex(3,4))# => [(3+4i), (2+3i)]

Raises an exception if any type conversion fails.

Alias for:conjugate
Source
Also aliased as:conj
Source
static VALUEnumeric_denominator(VALUE self){    return f_denominator(f_to_r(self));}

Returns the denominator (always positive).

Source
static VALUEnum_div(VALUE x, VALUE y){    if (rb_equal(INT2FIX(0), y)) rb_num_zerodiv();    return rb_funcall(num_funcall1(x, '/', y), rb_intern("floor"), 0);}

Returns the quotientself/other as an integer (viafloor), using method/ in the derived class ofself. (Numeric itself does not define method/.)

Of the Core and Standard Library classes, OnlyFloat andRational use this implementation.

Source
static VALUEnum_divmod(VALUE x, VALUE y){    return rb_assoc_new(num_div(x, y), num_modulo(x, y));}

Returns a 2-element array[q, r], where

q = (self/other).floor# Quotientr =self%other# Remainder

Of the Core and Standard Library classes, onlyRational uses this implementation.

Examples:

Rational(11,1).divmod(4)# => [2, (3/1)]Rational(11,1).divmod(-4)# => [-3, (-1/1)]Rational(-11,1).divmod(4)# => [-3, (1/1)]Rational(-11,1).divmod(-4)# => [2, (-3/1)]Rational(12,1).divmod(4)# => [3, (0/1)]Rational(12,1).divmod(-4)# => [-3, (0/1)]Rational(-12,1).divmod(4)# => [-3, (0/1)]Rational(-12,1).divmod(-4)# => [3, (0/1)]Rational(13,1).divmod(4.0)# => [3, 1.0]Rational(13,1).divmod(Rational(4,11))# => [35, (3/11)]
Source
# File numeric.rb, line 9defdupselfend

Returnsself.

Related:Numeric#clone.

Source
static VALUEnum_eql(VALUE x, VALUE y){    if (TYPE(x) != TYPE(y)) return Qfalse;    if (RB_BIGNUM_TYPE_P(x)) {        return rb_big_eql(x, y);    }    return rb_equal(x, y);}

Returnstrue ifself andother are the same type and have equal values.

Of the Core and Standard Library classes, onlyInteger,Rational, andComplex use this implementation.

Examples:

1.eql?(1)# => true1.eql?(1.0)# => false1.eql?(Rational(1,1))# => false1.eql?(Complex(1,0))# => false

Methodeql? is different from== in thateql? requires matching types, while== does not.

Source
static VALUEnum_fdiv(VALUE x, VALUE y){    return rb_funcall(rb_Float(x), '/', 1, y);}

Returns the quotientself/other as a float, using method/ in the derived class ofself. (Numeric itself does not define method/.)

Of the Core and Standard Library classes, onlyBigDecimal uses this implementation.

Source
# File numeric.rb, line 48deffinite?trueend

Returnstrue ifself is a finite number,false otherwise.

Source
static VALUEnum_floor(int argc, VALUE *argv, VALUE num){    return flo_floor(argc, argv, rb_Float(num));}

Returns the largest float or integer that is less than or equal toself, as specified by the given ‘ndigits`, which must be aninteger-convertible object.

Equivalent toself.to_f.floor(ndigits).

Related:ceil,Float#floor.

Source
static VALUEnum_imaginary(VALUE num){    return rb_complex_new(INT2FIX(0), num);}

ReturnsComplex(0, self):

2.i# => (0+2i)-2.i# => (0-2i)2.0.i# => (0+2.0i)Rational(1,2).i# => (0+(1/2)*i)Complex(3,4).i# Raises NoMethodError.
Alias for:imaginary
Source
Also aliased as:imag
Source
# File numeric.rb, line 58definfinite?nilend

Returnsnil, -1, or 1 depending on whetherself is finite,-Infinity, or+Infinity.

Source
# File numeric.rb, line 39definteger?falseend

Returnstrue ifself is anInteger.

1.0.integer?# => false1.integer?# => true
Alias for:abs
Alias for:%
Source
static VALUEnum_negative_p(VALUE num){    return RBOOL(rb_num_negative_int_p(num));}

Returnstrue ifself is less than 0,false otherwise.

Source
static VALUEnum_nonzero_p(VALUE num){    if (RTEST(num_funcall0(num, rb_intern("zero?")))) {        return Qnil;    }    return num;}

Returnsself ifself is not a zero value,nil otherwise; uses methodzero? for the evaluation.

The returnedself allows the method to be chained:

a =%w[z Bb bB bb BB a aA Aa AA A]a.sort {|a,b| (a.downcase<=>b.downcase).nonzero?||a<=>b }# => ["A", "a", "AA", "Aa", "aA", "BB", "Bb", "bB", "bb", "z"]

Of the Core and Standard Library classes,Integer,Float,Rational, andComplex use this implementation.

Related:zero?

Source
static VALUEnumeric_numerator(VALUE self){    return f_numerator(f_to_r(self));}

Returns the numerator.

Alias for:arg
Source
static VALUEnumeric_polar(VALUE self){    VALUE abs, arg;    if (RB_INTEGER_TYPE_P(self)) {        abs = rb_int_abs(self);        arg = numeric_arg(self);    }    else if (RB_FLOAT_TYPE_P(self)) {        abs = rb_float_abs(self);        arg = float_arg(self);    }    else if (RB_TYPE_P(self, T_RATIONAL)) {        abs = rb_rational_abs(self);        arg = numeric_arg(self);    }    else {        abs = f_abs(self);        arg = f_arg(self);    }    return rb_assoc_new(abs, arg);}

Returns array[self.abs, self.arg].

Source
static VALUEnum_positive_p(VALUE num){    const ID mid = '>';    if (FIXNUM_P(num)) {        if (method_basic_p(rb_cInteger))            return RBOOL((SIGNED_VALUE)num > (SIGNED_VALUE)INT2FIX(0));    }    else if (RB_BIGNUM_TYPE_P(num)) {        if (method_basic_p(rb_cInteger))            return RBOOL(BIGNUM_POSITIVE_P(num) && !rb_bigzero_p(num));    }    return rb_num_compare_with_zero(num, mid);}

Returnstrue ifself is greater than 0,false otherwise.

Source
VALUErb_numeric_quo(VALUE x, VALUE y){    if (RB_TYPE_P(x, T_COMPLEX)) {        return rb_complex_div(x, y);    }    if (RB_FLOAT_TYPE_P(y)) {        return rb_funcallv(x, idFdiv, 1, &y);    }    x = rb_convert_type(x, T_RATIONAL, "Rational", "to_r");    return rb_rational_div(x, y);}

Returns the most exact division (rational for integers, float for floats).

Source
# File numeric.rb, line 27defrealselfend

Returnsself.

Source
# File numeric.rb, line 18defreal?trueend

Returnstrue ifself is a real number (i.e. notComplex).

Returns array[self, 0].

Alias for:rectangular
Source
Also aliased as:rect
Source
static VALUEnum_remainder(VALUE x, VALUE y){    if (!rb_obj_is_kind_of(y, rb_cNumeric)) {        do_coerce(&x, &y, TRUE);    }    VALUE z = num_funcall1(x, '%', y);    if ((!rb_equal(z, INT2FIX(0))) &&        ((rb_num_negative_int_p(x) &&          rb_num_positive_int_p(y)) ||         (rb_num_positive_int_p(x) &&          rb_num_negative_int_p(y)))) {        if (RB_FLOAT_TYPE_P(y)) {            if (isinf(RFLOAT_VALUE(y))) {                return x;            }        }        return rb_funcall(z, '-', 1, y);    }    return z;}

Returns the remainder after dividingself byother.

Of the Core and Standard Library classes, onlyFloat andRational use this implementation.

Examples:

11.0.remainder(4)# => 3.011.0.remainder(-4)# => 3.0-11.0.remainder(4)# => -3.0-11.0.remainder(-4)# => -3.012.0.remainder(4)# => 0.012.0.remainder(-4)# => 0.0-12.0.remainder(4)# => -0.0-12.0.remainder(-4)# => -0.013.0.remainder(4.0)# => 1.013.0.remainder(Rational(4,1))# => 1.0Rational(13,1).remainder(4)# => (1/1)Rational(13,1).remainder(-4)# => (1/1)Rational(-13,1).remainder(4)# => (-1/1)Rational(-13,1).remainder(-4)# => (-1/1)
Source
static VALUEnum_round(int argc, VALUE* argv, VALUE num){    return flo_round(argc, argv, rb_Float(num));}

Returnsself rounded to the nearest value with a precision ofdigits decimal digits.

Numeric implements this by convertingself to aFloat and invokingFloat#round.

Source
static VALUEnum_step(int argc, VALUE *argv, VALUE from){    VALUE to, step;    int desc, inf;    if (!rb_block_given_p()) {        VALUE by = Qundef;        num_step_extract_args(argc, argv, &to, &step, &by);        if (!UNDEF_P(by)) {            step = by;        }        if (NIL_P(step)) {            step = INT2FIX(1);        }        else if (rb_equal(step, INT2FIX(0))) {            rb_raise(rb_eArgError, "step can't be 0");        }        if ((NIL_P(to) || rb_obj_is_kind_of(to, rb_cNumeric)) &&            rb_obj_is_kind_of(step, rb_cNumeric)) {            return rb_arith_seq_new(from, ID2SYM(rb_frame_this_func()), argc, argv,                                    num_step_size, from, to, step, FALSE);        }        return SIZED_ENUMERATOR_KW(from, 2, ((VALUE [2]){to, step}), num_step_size, FALSE);    }    desc = num_step_scan_args(argc, argv, &to, &step, TRUE, FALSE);    if (rb_equal(step, INT2FIX(0))) {        inf = 1;    }    else if (RB_FLOAT_TYPE_P(to)) {        double f = RFLOAT_VALUE(to);        inf = isinf(f) && (signbit(f) ? desc : !desc);    }    else inf = 0;    if (FIXNUM_P(from) && (inf || FIXNUM_P(to)) && FIXNUM_P(step)) {        long i = FIX2LONG(from);        long diff = FIX2LONG(step);        if (inf) {            for (;; i += diff)                rb_yield(LONG2FIX(i));        }        else {            long end = FIX2LONG(to);            if (desc) {                for (; i >= end; i += diff)                    rb_yield(LONG2FIX(i));            }            else {                for (; i <= end; i += diff)                    rb_yield(LONG2FIX(i));            }        }    }    else if (!ruby_float_step(from, to, step, FALSE, FALSE)) {        VALUE i = from;        if (inf) {            for (;; i = rb_funcall(i, '+', 1, step))                rb_yield(i);        }        else {            ID cmp = desc ? '<' : '>';            for (; !RTEST(rb_funcall(i, cmp, 1, to)); i = rb_funcall(i, '+', 1, step))                rb_yield(i);        }    }    return from;}

Generates a sequence of numbers; with a block given, traverses the sequence.

Of the Core and Standard Library classes,Integer,Float, andRational use this implementation.

A quick example:

squares = []1.step(by:2,to:10) {|i|squares.push(i*i) }squares# => [1, 9, 25, 49, 81]

The generated sequence:

  • Begins withself.

  • Continues at intervals ofby (which may not be zero).

  • Ends with the last number that is within or equal toto; that is, less than or equal toto ifby is positive, greater than or equal toto ifby is negative. Ifto isnil, the sequence is of infinite length.

If a block is given, calls the block with each number in the sequence; returnsself. If no block is given, returns anEnumerator::ArithmeticSequence.

Keyword Arguments

With keyword argumentsby andto, their values (or defaults) determine the step and limit:

# Both keywords given.squares = []4.step(by:2,to:10) {|i|squares.push(i*i) }# => 4squares# => [16, 36, 64, 100]cubes = []3.step(by:-1.5,to:-3) {|i|cubes.push(i*i*i) }# => 3cubes# => [27.0, 3.375, 0.0, -3.375, -27.0]squares = []1.2.step(by:0.2,to:2.0) {|f|squares.push(f*f) }squares# => [1.44, 1.9599999999999997, 2.5600000000000005, 3.24, 4.0]squares = []Rational(6/5).step(by:0.2,to:2.0) {|r|squares.push(r*r) }squares# => [1.0, 1.44, 1.9599999999999997, 2.5600000000000005, 3.24, 4.0]# Only keyword to given.squares = []4.step(to:10) {|i|squares.push(i*i) }# => 4squares# => [16, 25, 36, 49, 64, 81, 100]# Only by given.# Only keyword by givensquares = []4.step(by:2) {|i|squares.push(i*i);breakifi>10 }squares# => [16, 36, 64, 100, 144]# No block given.e =3.step(by:-1.5,to:-3)# => (3.step(by: -1.5, to: -3))e.class# => Enumerator::ArithmeticSequence

Positional Arguments

With optional positional argumentsto andby, their values (or defaults) determine the step and limit:

squares = []4.step(10,2) {|i|squares.push(i*i) }# => 4squares# => [16, 36, 64, 100]squares = []4.step(10) {|i|squares.push(i*i) }squares# => [16, 25, 36, 49, 64, 81, 100]squares = []4.step {|i|squares.push(i*i);breakifi>10 }# => nilsquares# => [16, 25, 36, 49, 64, 81, 100, 121]

Implementation Notes

If all the arguments are integers, the loop operates using an integer counter.

If any of the arguments are floating point numbers, all are converted to floats, and the loop is executedfloor(n + n*Float::EPSILON) + 1 times, wheren = (limit - self)/step.

Source
static VALUEnumeric_to_c(VALUE self){    return rb_complex_new1(self);}

Returnsself as aComplex object.

Source
static VALUEnum_to_int(VALUE num){    return num_funcall0(num, id_to_i);}

Returnsself as an integer; converts using methodto_i in the derived class.

Of the Core and Standard Library classes, onlyRational andComplex use this implementation.

Examples:

Rational(1,2).to_int# => 0Rational(2,1).to_int# => 2Complex(2,0).to_int# => 2Complex(2,1).to_int# Raises RangeError (non-zero imaginary part)
Source
static VALUEnum_truncate(int argc, VALUE *argv, VALUE num){    return flo_truncate(argc, argv, rb_Float(num));}

Returnsself truncated (toward zero) to a precision ofdigits decimal digits.

Numeric implements this by convertingself to aFloat and invokingFloat#truncate.

Source
static VALUEnum_zero_p(VALUE num){    return rb_equal(num, INT2FIX(0));}

Returnstrue ifzero has a zero value,false otherwise.

Of the Core and Standard Library classes, onlyRational andComplex use this implementation.