class Enumerator
A class which allows both internal and external iteration.
AnEnumerator can be created by the following methods.
Most methods have two forms: a block form where the contents are evaluated for each item in the enumeration, and a non-block form which returns a newEnumerator wrapping the iteration.
enumerator =%w(one two three).eachputsenumerator.class# => Enumeratorenumerator.each_with_object("foo")do|item,obj|puts"#{obj}: #{item}"end# foo: one# foo: two# foo: threeenum_with_obj =enumerator.each_with_object("foo")putsenum_with_obj.class# => Enumeratorenum_with_obj.eachdo|item,obj|puts"#{obj}: #{item}"end# foo: one# foo: two# foo: three
This allows you to chain Enumerators together. For example, you can map a list’s elements to strings containing the index and the element as a string via:
puts%w[foo bar baz].map.with_index {|w,i|"#{i}:#{w}" }# => ["0:foo", "1:bar", "2:baz"]
External Iteration¶↑
AnEnumerator can also be used as an external iterator. For example,Enumerator#next returns the next value of the iterator or raisesStopIteration if theEnumerator is at the end.
e = [1,2,3].each# returns an enumerator object.putse.next# => 1putse.next# => 2putse.next# => 3putse.next# raises StopIteration
next,next_values,peek, andpeek_values are the only methods which use external iteration (andArray#zip(Enumerable-not-Array) which usesnext internally).
These methods do not affect other internal enumeration methods, unless the underlying iteration method itself has side-effect, e.g.IO#each_line.
FrozenError will be raised if these methods are called against a frozen enumerator. Sincerewind andfeed also change state for external iteration, these methods may raiseFrozenError too.
External iteration differssignificantly from internal iteration due to using a Fiber:
The
Fiberadds some overhead compared to internal enumeration.The stacktrace will only include the stack from the
Enumerator, not above.Fiber-local variables arenot inherited inside the
EnumeratorFiber, which instead starts with no Fiber-local variables.Fiberstorage variablesare inherited and are designed to handleEnumeratorFibers. Assigning to aFiberstorage variable only affects the currentFiber, so if you want to change state in the callerFiberof theEnumeratorFiber, you need to use an extra indirection (e.g., use some object in theFiberstorage variable and mutate some ivar of it).
Concretely:
Thread.current[:fiber_local] =1Fiber[:storage_var] =1e =Enumerator.newdo|y|pThread.current[:fiber_local]# for external iteration: nil, for internal iteration: 1pFiber[:storage_var]# => 1, inheritedFiber[:storage_var]+=1y<<42endpe.next# => 42pFiber[:storage_var]# => 1 (it ran in a different Fiber)e.each {p_1 }pFiber[:storage_var]# => 2 (it ran in the same Fiber/"stack" as the current Fiber)
Convert External Iteration to Internal Iteration¶↑
You can use an external iterator to implement an internal iterator as follows:
defext_each(e)whiletruebeginvs =e.next_valuesrescueStopIterationreturn$!.resultendy =yield(*vs)e.feedyendendo =Object.newdefo.eachputsyieldputsyield(1)putsyield(1,2)3end# use o.each as an internal iterator directly.putso.each {|*x|putsx; [:b,*x] }# => [], [:b], [1], [:b, 1], [1, 2], [:b, 1, 2], 3# convert o.each to an external iterator for# implementing an internal iterator.putsext_each(o.to_enum) {|*x|putsx; [:b,*x] }# => [], [:b], [1], [:b, 1], [1, 2], [:b, 1, 2], 3
Public Class Methods
Source
static VALUEenumerator_initialize(int argc, VALUE *argv, VALUE obj){ VALUE iter = rb_block_proc(); VALUE recv = generator_init(generator_allocate(rb_cGenerator), iter); VALUE arg0 = rb_check_arity(argc, 0, 1) ? argv[0] : Qnil; VALUE size = convert_to_feasible_size_value(arg0); return enumerator_init(obj, recv, sym_each, 0, 0, 0, size, false);}Creates a newEnumerator object, which can be used as anEnumerable.
Iteration is defined by the given block, in which a “yielder” object, given as block parameter, can be used to yield a value by calling theyield method (aliased as<<):
fib =Enumerator.newdo|y|a =b =1loopdoy<<aa,b =b,a+bendendfib.take(10)# => [1, 1, 2, 3, 5, 8, 13, 21, 34, 55]
The optional parameter can be used to specify how to calculate the size in a lazy fashion (seeEnumerator#size). It can either be a value or a callable object.
Source
static VALUEenumerator_s_produce(int argc, VALUE *argv, VALUE klass){ VALUE init, producer; if (!rb_block_given_p()) rb_raise(rb_eArgError, "no block given"); if (rb_scan_args(argc, argv, "01", &init) == 0) { init = Qundef; } producer = producer_init(producer_allocate(rb_cEnumProducer), init, rb_block_proc()); return rb_enumeratorize_with_size_kw(producer, sym_each, 0, 0, producer_size, RB_NO_KEYWORDS);}Creates an infinite enumerator from any block, just called over and over. The result of the previous iteration is passed to the next one. Ifinitial is provided, it is passed to the first iteration, and becomes the first element of the enumerator; if it is not provided, the first iteration receivesnil, and its result becomes the first element of the iterator.
RaisingStopIteration from the block stops an iteration.
Enumerator.produce(1,&:succ)# => enumerator of 1, 2, 3, 4, ....Enumerator.produce {rand(10) }# => infinite random number sequenceancestors =Enumerator.produce(node) {|prev|node =prev.parentorraiseStopIteration }enclosing_section =ancestors.find {|n|n.type==:section }
Using::produce together withEnumerable methods likeEnumerable#detect,Enumerable#slice_after,Enumerable#take_while can provide Enumerator-based alternatives forwhile anduntil cycles:
# Find next Tuesdayrequire"date"Enumerator.produce(Date.today,&:succ).detect(&:tuesday?)# Simple lexer:require"strscan"scanner =StringScanner.new("7+38/6")PATTERN =%r{\d+|[-/+*]}Enumerator.produce {scanner.scan(PATTERN) }.slice_after {scanner.eos? }.first# => ["7", "+", "38", "/", "6"]
Source
static VALUEenumerator_s_product(int argc, VALUE *argv, VALUE klass){ VALUE enums = Qnil, options = Qnil, block = Qnil; rb_scan_args(argc, argv, "*:&", &enums, &options, &block); if (!NIL_P(options) && !RHASH_EMPTY_P(options)) { rb_exc_raise(rb_keyword_error_new("unknown", rb_hash_keys(options))); } VALUE obj = enum_product_initialize(argc, argv, enum_product_allocate(rb_cEnumProduct)); if (!NIL_P(block)) { enum_product_run(obj, block); return Qnil; } return obj;}Generates a new enumerator object that generates a Cartesian product of given enumerable objects. This is equivalent toEnumerator::Product.new.
e =Enumerator.product(1..3, [4,5])e.to_a#=> [[1, 4], [1, 5], [2, 4], [2, 5], [3, 4], [3, 5]]e.size#=> 6
When a block is given, calls the block with each N-element array generated and returnsnil.
Public Instance Methods
Source
static VALUEenumerator_plus(VALUE obj, VALUE eobj){ return new_enum_chain(rb_ary_new_from_args(2, obj, eobj));}Returns an enumerator object generated from this enumerator and a given enumerable.
e = (1..3).each+ [4,5]e.to_a#=> [1, 2, 3, 4, 5]
Source
static VALUEenumerator_each(int argc, VALUE *argv, VALUE obj){ struct enumerator *e = enumerator_ptr(obj); if (argc > 0) { VALUE args = (e = enumerator_ptr(obj = rb_obj_dup(obj)))->args; if (args) {#if SIZEOF_INT < SIZEOF_LONG /* check int range overflow */ rb_long2int(RARRAY_LEN(args) + argc);#endif args = rb_ary_dup(args); rb_ary_cat(args, argv, argc); } else { args = rb_ary_new4(argc, argv); } RB_OBJ_WRITE(obj, &e->args, args); e->size = Qnil; e->size_fn = 0; } if (!rb_block_given_p()) return obj; if (!lazy_precheck(e->procs)) return Qnil; return enumerator_block_call(obj, 0, obj);}Iterates over the block according to how thisEnumerator was constructed. If no block and no arguments are given, returns self.
Examples¶↑
"Hello, world!".scan(/\w+/)#=> ["Hello", "world"]"Hello, world!".to_enum(:scan,/\w+/).to_a#=> ["Hello", "world"]"Hello, world!".to_enum(:scan).each(/\w+/).to_a#=> ["Hello", "world"]obj =Object.newdefobj.each_arg(a,b=:b,*rest)yieldayieldbyieldrest:method_returnedendenum =obj.to_enum:each_arg,:a,:xenum.each.to_a#=> [:a, :x, []]enum.each.equal?(enum)#=> trueenum.each {|elm|elm }#=> :method_returnedenum.each(:y,:z).to_a#=> [:a, :x, [:y, :z]]enum.each(:y,:z).equal?(enum)#=> falseenum.each(:y,:z) {|elm|elm }#=> :method_returned
Source
static VALUEenumerator_each_with_index(VALUE obj){ return enumerator_with_index(0, NULL, obj);}Same asEnumerator#with_index(0), i.e. there is no starting offset.
If no block is given, a newEnumerator is returned that includes the index.
Source
static VALUEenumerator_with_object(VALUE obj, VALUE memo){ RETURN_SIZED_ENUMERATOR(obj, 1, &memo, enumerator_enum_size); enumerator_block_call(obj, enumerator_with_object_i, memo); return memo;}Iterates the given block for each element with an arbitrary object,obj, and returnsobj
If no block is given, returns a newEnumerator.
Example¶↑
to_three =Enumerator.newdo|y|3.timesdo|x|y<<xendendto_three_with_string =to_three.with_object("foo")to_three_with_string.eachdo|x,string|puts"#{string}: #{x}"end# => foo: 0# => foo: 1# => foo: 2
Source
static VALUEenumerator_feed(VALUE obj, VALUE v){ struct enumerator *e = enumerator_ptr(obj); rb_check_frozen(obj); if (!UNDEF_P(e->feedvalue)) { rb_raise(rb_eTypeError, "feed value already set"); } RB_OBJ_WRITE(obj, &e->feedvalue, v); return Qnil;}Sets the value to be returned by the next yield insidee.
If the value is not set, the yield returns nil.
This value is cleared after being yielded.
# Array#map passes the array's elements to "yield" and collects the# results of "yield" as an array.# Following example shows that "next" returns the passed elements and# values passed to "feed" are collected as an array which can be# obtained by StopIteration#result.e = [1,2,3].mappe.next#=> 1e.feed"a"pe.next#=> 2e.feed"b"pe.next#=> 3e.feed"c"begine.nextrescueStopIterationp$!.result#=> ["a", "b", "c"]endo =Object.newdefo.eachx =yield# (2) blockspx# (5) => "foo"x =yield# (6) blockspx# (8) => nilx =yield# (9) blockspx# not reached w/o another e.nextende =o.to_enume.next# (1)e.feed"foo"# (3)e.next# (4)e.next# (7)# (10)
Source
static VALUEenumerator_inspect(VALUE obj){ return rb_exec_recursive(inspect_enumerator, obj, 0);}Creates a printable version ofe.
Source
static VALUEenumerator_next(VALUE obj){ VALUE vs = enumerator_next_values(obj); return ary2sv(vs, 0);}Returns the next object in the enumerator, and move the internal position forward. When the position reached at the end,StopIteration is raised.
Example¶↑
a = [1,2,3]e =a.to_enumpe.next#=> 1pe.next#=> 2pe.next#=> 3pe.next#raises StopIteration
See class-level notes about external iterators.
Source
static VALUEenumerator_next_values(VALUE obj){ struct enumerator *e = enumerator_ptr(obj); VALUE vs; rb_check_frozen(obj); if (!UNDEF_P(e->lookahead)) { vs = e->lookahead; e->lookahead = Qundef; return vs; } return get_next_values(obj, e);}Returns the next object as an array in the enumerator, and move the internal position forward. When the position reached at the end,StopIteration is raised.
See class-level notes about external iterators.
This method can be used to distinguishyield andyield nil.
Example¶↑
o =Object.newdefo.eachyieldyield1yield1,2yieldnilyield [1,2]ende =o.to_enumpe.next_valuespe.next_valuespe.next_valuespe.next_valuespe.next_valuese =o.to_enumpe.nextpe.nextpe.nextpe.nextpe.next## yield args next_values next# yield [] nil# yield 1 [1] 1# yield 1, 2 [1, 2] [1, 2]# yield nil [nil] nil# yield [1, 2] [[1, 2]] [1, 2]
Source
static VALUEenumerator_peek(VALUE obj){ VALUE vs = enumerator_peek_values(obj); return ary2sv(vs, 1);}Returns the next object in the enumerator, but doesn’t move the internal position forward. If the position is already at the end,StopIteration is raised.
See class-level notes about external iterators.
Example¶↑
a = [1,2,3]e =a.to_enumpe.next#=> 1pe.peek#=> 2pe.peek#=> 2pe.peek#=> 2pe.next#=> 2pe.next#=> 3pe.peek#raises StopIteration
Source
static VALUEenumerator_peek_values_m(VALUE obj){ return rb_ary_dup(enumerator_peek_values(obj));}Returns the next object as an array, similar toEnumerator#next_values, but doesn’t move the internal position forward. If the position is already at the end,StopIteration is raised.
See class-level notes about external iterators.
Example¶↑
o =Object.newdefo.eachyieldyield1yield1,2ende =o.to_enumpe.peek_values#=> []e.nextpe.peek_values#=> [1]pe.peek_values#=> [1]e.nextpe.peek_values#=> [1, 2]e.nextpe.peek_values# raises StopIteration
Source
static VALUEenumerator_rewind(VALUE obj){ struct enumerator *e = enumerator_ptr(obj); rb_check_frozen(obj); rb_check_funcall(e->obj, id_rewind, 0, 0); e->fib = 0; e->dst = Qnil; e->lookahead = Qundef; e->feedvalue = Qundef; e->stop_exc = Qfalse; return obj;}Rewinds the enumeration sequence to the beginning.
If the enclosed object responds to a “rewind” method, it is called.
Source
static VALUEenumerator_size(VALUE obj){ struct enumerator *e = enumerator_ptr(obj); int argc = 0; const VALUE *argv = NULL; VALUE size; if (e->procs) { struct generator *g = generator_ptr(e->obj); VALUE receiver = rb_check_funcall(g->obj, id_size, 0, 0); long i = 0; for (i = 0; i < RARRAY_LEN(e->procs); i++) { VALUE proc = RARRAY_AREF(e->procs, i); struct proc_entry *entry = proc_entry_ptr(proc); lazyenum_size_func *size_fn = entry->fn->size; if (!size_fn) { return Qnil; } receiver = (*size_fn)(proc, receiver); } return receiver; } if (e->size_fn) { return (*e->size_fn)(e->obj, e->args, obj); } if (e->args) { argc = (int)RARRAY_LEN(e->args); argv = RARRAY_CONST_PTR(e->args); } size = rb_check_funcall_kw(e->size, id_call, argc, argv, e->kw_splat); if (!UNDEF_P(size)) return size; return e->size;}Returns the size of the enumerator, ornil if it can’t be calculated lazily.
(1..100).to_a.permutation(4).size# => 94109400loop.size# => Float::INFINITY(1..100).drop_while.size# => nil
Source
static VALUEenumerator_with_index(int argc, VALUE *argv, VALUE obj){ VALUE memo; rb_check_arity(argc, 0, 1); RETURN_SIZED_ENUMERATOR(obj, argc, argv, enumerator_enum_size); memo = (!argc || NIL_P(memo = argv[0])) ? INT2FIX(0) : rb_to_int(memo); return enumerator_block_call(obj, enumerator_with_index_i, (VALUE)MEMO_NEW(memo, 0, 0));}Iterates the given block for each element with an index, which starts fromoffset. If no block is given, returns a newEnumerator that includes the index, starting fromoffset
offsetthe starting index to use
Iterates the given block for each element with an arbitrary object,obj, and returnsobj
If no block is given, returns a newEnumerator.
Example¶↑
to_three =Enumerator.newdo|y|3.timesdo|x|y<<xendendto_three_with_string =to_three.with_object("foo")to_three_with_string.eachdo|x,string|puts"#{string}: #{x}"end# => foo: 0# => foo: 1# => foo: 2