Rate this Page

ZeroPad1d#

classtorch.nn.modules.padding.ZeroPad1d(padding)[source]#

Pads the input tensor boundaries with zero.

ForN-dimensional padding, usetorch.nn.functional.pad().

Parameters

padding (int,tuple) – the size of the padding. If isint, uses the samepadding in both boundaries. If a 2-tuple, uses(padding_left\text{padding\_left},padding_right\text{padding\_right})

Shape:

Examples:

>>>m=nn.ZeroPad1d(2)>>>input=torch.randn(1,2,4)>>>inputtensor([[[-1.0491, -0.7152, -0.0749,  0.8530],         [-1.3287,  1.8966,  0.1466, -0.2771]]])>>>m(input)tensor([[[ 0.0000,  0.0000, -1.0491, -0.7152, -0.0749,  0.8530,  0.0000,           0.0000],         [ 0.0000,  0.0000, -1.3287,  1.8966,  0.1466, -0.2771,  0.0000,           0.0000]]])>>>m=nn.ZeroPad1d(2)>>>input=torch.randn(1,2,3)>>>inputtensor([[[ 1.6616,  1.4523, -1.1255],         [-3.6372,  0.1182, -1.8652]]])>>>m(input)tensor([[[ 0.0000,  0.0000,  1.6616,  1.4523, -1.1255,  0.0000,  0.0000],         [ 0.0000,  0.0000, -3.6372,  0.1182, -1.8652,  0.0000,  0.0000]]])>>># using different paddings for different sides>>>m=nn.ZeroPad1d((3,1))>>>m(input)tensor([[[ 0.0000,  0.0000,  0.0000,  1.6616,  1.4523, -1.1255,  0.0000],         [ 0.0000,  0.0000,  0.0000, -3.6372,  0.1182, -1.8652,  0.0000]]])
extra_repr()[source]#

Return the extra representation of the module.

Return type

str