ReflectionPad1d#
- classtorch.nn.modules.padding.ReflectionPad1d(padding)[source]#
Pads the input tensor using the reflection of the input boundary.
ForN-dimensional padding, use
torch.nn.functional.pad().- Parameters
padding (int,tuple) – the size of the padding. If isint, uses the samepadding in all boundaries. If a 2-tuple, uses(,)Note that padding size should be less than the corresponding input dimension.
- Shape:
Input: or.
Output: or, where
Examples:
>>>m=nn.ReflectionPad1d(2)>>>input=torch.arange(8,dtype=torch.float).reshape(1,2,4)>>>inputtensor([[[0., 1., 2., 3.], [4., 5., 6., 7.]]])>>>m(input)tensor([[[2., 1., 0., 1., 2., 3., 2., 1.], [6., 5., 4., 5., 6., 7., 6., 5.]]])>>># using different paddings for different sides>>>m=nn.ReflectionPad1d((3,1))>>>m(input)tensor([[[3., 2., 1., 0., 1., 2., 3., 2.], [7., 6., 5., 4., 5., 6., 7., 6.]]])