torch.addbmm#
- torch.addbmm(input,batch1,batch2,*,beta=1,alpha=1,out=None)→Tensor#
Performs a batch matrix-matrix product of matrices storedin
batch1andbatch2,with a reduced add step (all matrix multiplications get accumulatedalong the first dimension).inputis added to the final result.batch1andbatch2must be 3-D tensors each containing thesame number of matrices.If
batch1is a tensor,batch2is a tensor,inputmust bebroadcastable with a tensorandoutwill be a tensor.If
betais 0, then the content ofinputwill be ignored, andnan andinf init will not be propagated.For inputs of typeFloatTensor orDoubleTensor, arguments
betaandalphamust be real numbers, otherwise they should be integers.This operator supportsTensorFloat32.
On certain ROCm devices, when using float16 inputs this module will usedifferent precision for backward.
- Parameters
- Keyword Arguments
beta (Number,optional) – multiplier for
input()alpha (Number,optional) – multiplier forbatch1 @ batch2 ()
out (Tensor,optional) – the output tensor.
Example:
>>>M=torch.randn(3,5)>>>batch1=torch.randn(10,3,4)>>>batch2=torch.randn(10,4,5)>>>torch.addbmm(M,batch1,batch2)tensor([[ 6.6311, 0.0503, 6.9768, -12.0362, -2.1653], [ -4.8185, -1.4255, -6.6760, 8.9453, 2.5743], [ -3.8202, 4.3691, 1.0943, -1.1109, 5.4730]])