torch.randint#
- torch.randint(low=0,high,size,\*,generator=None,out=None,dtype=None,layout=torch.strided,device=None,requires_grad=False)→Tensor#
Returns a tensor filled with random integers generated uniformlybetween
low(inclusive) andhigh(exclusive).The shape of the tensor is defined by the variable argument
size.Note
With the global dtype default (
torch.float32), this function returnsa tensor with dtypetorch.int64.- Parameters
- Keyword Arguments
generator (
torch.Generator, optional) – a pseudorandom number generator for samplingout (Tensor,optional) – the output tensor.
dtype (torch.dtype,optional) – the desired data type of returned tensor. Default: if
None,this function returns a tensor with dtypetorch.int64.layout (
torch.layout, optional) – the desired layout of returned Tensor.Default:torch.strided.device (
torch.device, optional) – the desired device of returned tensor.Default: ifNone, uses the current device for the default tensor type(seetorch.set_default_device()).devicewill be the CPUfor CPU tensor types and the current CUDA device for CUDA tensor types.requires_grad (bool,optional) – If autograd should record operations on thereturned tensor. Default:
False.
Example:
>>>torch.randint(3,5,(3,))tensor([4, 3, 4])>>>torch.randint(10,(2,2))tensor([[0, 2], [5, 5]])>>>torch.randint(3,10,(2,2))tensor([[4, 5], [6, 7]])