Rate this Page

torch.export API Reference#

Created On: Jul 17, 2025 | Last Updated On: Jul 17, 2025

torch.export.export(mod,args,kwargs=None,*,dynamic_shapes=None,strict=False,preserve_module_call_signature=(),prefer_deferred_runtime_asserts_over_guards=False)[source]#

export() takes any nn.Module along with example inputs, and produces a traced graph representingonly the Tensor computation of the function in an Ahead-of-Time (AOT) fashion,which can subsequently be executed with different inputs or serialized. Thetraced graph (1) produces normalized operators in the functional ATen operator set(as well as any user-specified custom operators), (2) has eliminated all Python controlflow and data structures (with certain exceptions), and (3) records the set ofshape constraints needed to show that this normalization and control-flow eliminationis sound for future inputs.

Soundness Guarantee

While tracing,export() takes note of shape-related assumptionsmade by the user program and the underlying PyTorch operator kernels.The outputExportedProgram is considered valid only when theseassumptions hold true.

Tracing makes assumptions on the shapes (not values) of input tensors.Such assumptions must be validated at graph capture time forexport()to succeed. Specifically:

  • Assumptions on static shapes of input tensors are automatically validated without additional effort.

  • Assumptions on dynamic shape of input tensors require explicit specificationby using theDim() API to construct dynamic dimensions and by associatingthem with example inputs through thedynamic_shapes argument.

If any assumption can not be validated, a fatal error will be raised. When that happens,the error message will include suggested fixes to the specification that are neededto validate the assumptions. For exampleexport() might suggest thefollowing fix to the definition of a dynamic dimensiondim0_x, say appearing in theshape associated with inputx, that was previously defined asDim("dim0_x"):

dim=Dim("dim0_x",max=5)

This example means the generated code requires dimension 0 of inputx to be lessthan or equal to 5 to be valid. You can inspect the suggested fixes to dynamic dimensiondefinitions and then copy them verbatim into your code without needing to change thedynamic_shapes argument to yourexport() call.

Parameters
  • mod (Module) – We will trace the forward method of this module.

  • args (tuple[Any,...]) – Example positional inputs.

  • kwargs (Optional[Mapping[str,Any]]) – Optional example keyword inputs.

  • dynamic_shapes (Optional[Union[dict[str,Any],tuple[Any,...],list[Any]]]) –

    An optional argument where the type should either be:1) a dict from argument names off to their dynamic shape specifications,2) a tuple that specifies dynamic shape specifications for each input in original order.If you are specifying dynamism on keyword args, you will need to pass them in the order thatis defined in the original function signature.

    The dynamic shape of a tensor argument can be specified as either(1) a dict from dynamic dimension indices toDim() types, where it isnot required to include static dimension indices in this dict, but when they are,they should be mapped to None; or (2) a tuple / list ofDim() types or None,where theDim() types correspond to dynamic dimensions, and static dimensionsare denoted by None. Arguments that are dicts or tuples / lists of tensors arerecursively specified by using mappings or sequences of contained specifications.

  • strict (bool) – When disabled (default), the export function will trace the program throughPython runtime, which by itself will not validate some of the implicit assumptionsbaked into the graph. It will still validate most critical assumptions like shapesafety. When enabled (by settingstrict=True), the export function will tracethe program through TorchDynamo which will ensure the soundness of the resultinggraph. TorchDynamo has limited Python feature coverage, thus you may experience moreerrors. Note that toggling this argument does not affect the resulting IR spec to bedifferent and the model will be serialized in the same way regardless of what valueis passed here.

  • preserve_module_call_signature (tuple[str,...]) – A list of submodule paths for which the originalcalling conventions are preserved as metadata. The metadata will be used when callingtorch.export.unflatten to preserve the original calling conventions of modules.

Returns

AnExportedProgram containing the traced callable.

Return type

ExportedProgram

Acceptable input/output types

Acceptable types of inputs (forargs andkwargs) and outputs include:

  • Primitive types, i.e.torch.Tensor,int,float,bool andstr.

  • Dataclasses, but they must be registered by callingregister_dataclass() first.

  • (Nested) Data structures comprising ofdict,list,tuple,namedtuple andOrderedDict containing all above types.

classtorch.export.ExportedProgram(root,graph,graph_signature,state_dict,range_constraints,module_call_graph,example_inputs=None,constants=None,*,verifiers=None)[source]#

Package of a program fromexport(). It containsantorch.fx.Graph that represents Tensor computation, a state_dict containingtensor values of all lifted parameters and buffers, and various metadata.

You can call an ExportedProgram like the original callable traced byexport() with the same calling convention.

To perform transformations on the graph, use.module property to accessantorch.fx.GraphModule. You can then useFX transformationto rewrite the graph. Afterwards, you can simply useexport()again to construct a correct ExportedProgram.

buffers()[source]#

Returns an iterator over original module buffers.

Warning

This API is experimental and isNOT backward-compatible.

Return type

Iterator[Tensor]

propertycall_spec#

Warning

This API is experimental and isNOT backward-compatible.

propertyconstants#

Warning

This API is experimental and isNOT backward-compatible.

propertydialect:str#

Warning

This API is experimental and isNOT backward-compatible.

propertyexample_inputs#

Warning

This API is experimental and isNOT backward-compatible.

propertygraph#

Warning

This API is experimental and isNOT backward-compatible.

propertygraph_module#

Warning

This API is experimental and isNOT backward-compatible.

propertygraph_signature#

Warning

This API is experimental and isNOT backward-compatible.

module(check_guards=True)[source]#

Returns a self contained GraphModule with all the parameters/buffers inlined.

  • Whencheck_guards=True (default), a_guards_fn submodule is generatedand a call to a_guards_fn submodule is inserted right after placeholdersin the graph. This module checks guards on inputs.

  • Whencheck_guards=False, a subset of these checks are performed by aforward pre-hook on the graph module. No_guards_fn submodule is generated.

Return type

GraphModule

propertymodule_call_graph#

Warning

This API is experimental and isNOT backward-compatible.

named_buffers()[source]#

Returns an iterator over original module buffers, yieldingboth the name of the buffer as well as the buffer itself.

Warning

This API is experimental and isNOT backward-compatible.

Return type

Iterator[tuple[str,torch.Tensor]]

named_parameters()[source]#

Returns an iterator over original module parameters, yieldingboth the name of the parameter as well as the parameter itself.

Warning

This API is experimental and isNOT backward-compatible.

Return type

Iterator[tuple[str,torch.nn.parameter.Parameter]]

parameters()[source]#

Returns an iterator over original module’s parameters.

Warning

This API is experimental and isNOT backward-compatible.

Return type

Iterator[Parameter]

propertyrange_constraints#

Warning

This API is experimental and isNOT backward-compatible.

run_decompositions(decomp_table=None,decompose_custom_triton_ops=False)[source]#

Run a set of decompositions on the exported program and returns a newexported program. By default we will run the Core ATen decompositions toget operators in theCore ATen Operator Set.

For now, we do not decompose joint graphs.

Parameters

decomp_table (Optional[dict[torch._ops.OperatorBase,Callable]]) – An optional argument that specifies decomp behaviour for Aten ops(1) If None, we decompose to core aten decompositions(2) If empty, we don’t decompose any operator

Return type

ExportedProgram

Some examples:

If you don’t want to decompose anything

ep=torch.export.export(model,...)ep=ep.run_decompositions(decomp_table={})

If you want to get a core aten operator set except for certain operator, you can do following:

ep=torch.export.export(model,...)decomp_table=torch.export.default_decompositions()decomp_table[your_op]=your_custom_decompep=ep.run_decompositions(decomp_table=decomp_table)
propertystate_dict#

Warning

This API is experimental and isNOT backward-compatible.

propertytensor_constants#

Warning

This API is experimental and isNOT backward-compatible.

validate()[source]#

Warning

This API is experimental and isNOT backward-compatible.

propertyverifier:Any#

Warning

This API is experimental and isNOT backward-compatible.

propertyverifiers#

Warning

This API is experimental and isNOT backward-compatible.

classtorch.export.dynamic_shapes.AdditionalInputs[source]#

Infers dynamic_shapes based on additional inputs.

This is useful particularly for deployment engineers who, on the one hand, mayhave access to ample testing or profiling data that can provide a fair sense ofrepresentative inputs for a model, but on the other hand, may not know enoughabout the model to guess which input shapes should be dynamic.

Input shapes that are different than the original are considered dynamic; conversely,those that are the same as the original are considered static. Moreover, we verifythat the additional inputs are valid for the exported program. This guarantees thattracing with them instead of the original would have generated the same graph.

Example:

args0,kwargs0=...# example inputs for export# other representative inputs that the exported program will run ondynamic_shapes=torch.export.AdditionalInputs()dynamic_shapes.add(args1,kwargs1)...dynamic_shapes.add(argsN,kwargsN)torch.export(...,args0,kwargs0,dynamic_shapes=dynamic_shapes)
add(args,kwargs=None)[source]#

Additional inputargs() andkwargs().

dynamic_shapes(m,args,kwargs=None)[source]#

Infers adynamic_shapes() pytree structure by merging shapes of theoriginal inputargs() andkwargs() and of each additional inputargs and kwargs.

verify(ep)[source]#

Verifies that an exported program is valid for each additional input.

classtorch.export.dynamic_shapes.Dim(name,*,min=None,max=None)[source]#

TheDim class allows users to specify dynamism in their exportedprograms. By marking a dimension with aDim, the compiler associates thedimension with a symbolic integer containing a dynamic range.

The API can be used in 2 ways: Dim hints (i.e. automatic dynamic shapes:Dim.AUTO,Dim.DYNAMIC,Dim.STATIC), or named Dims (i.e.Dim("name",min=1,max=2)).

Dim hints provide the lowest barrier to exportability, with the user onlyneeding to specify if a dimension if dynamic, static, or left for thecompiler to decide (Dim.AUTO). The export process will automaticallyinfer the remaining constraints on min/max ranges and relationships betweendimensions.

Example:

classFoo(nn.Module):defforward(self,x,y):assertx.shape[0]==4asserty.shape[0]>=16returnx@yx=torch.randn(4,8)y=torch.randn(8,16)dynamic_shapes={"x":{0:Dim.AUTO,1:Dim.AUTO},"y":{0:Dim.AUTO,1:Dim.AUTO},}ep=torch.export(Foo(),(x,y),dynamic_shapes=dynamic_shapes)

Here, export would raise an exception if we replaced all uses ofDim.AUTO withDim.DYNAMIC,asx.shape[0] is constrained to be static by the model.

More complex relations between dimensions may also be codegened as runtime assertion nodes by the compiler,e.g.(x.shape[0]+y.shape[1])%4==0, to be raised if runtime inputs do not satisfy such constraints.

You may also specify min-max bounds for Dim hints, e.g.Dim.AUTO(min=16,max=32),Dim.DYNAMIC(max=64),with the compiler inferring the remaining constraints within the ranges. An exception will be raised ifthe valid range is entirely outside the user-specified range.

Named Dims provide a stricter way of specifying dynamism, where exceptions are raised if the compilerinfers constraints that do not match the user specification. For example, exporting the previousmodel, the user would need the followingdynamic_shapes argument:

s0=Dim("s0")s1=Dim("s1",min=16)dynamic_shapes={"x":{0:4,1:s0},"y":{0:s0,1:s1},}ep=torch.export(Foo(),(x,y),dynamic_shapes=dynamic_shapes)

Named Dims also allow specification of relationships between dimensions, upto univariate linear relations. For example, the following indicates onedimension is a multiple of another plus 4:

s0=Dim("s0")s1=3*s0+4
classtorch.export.dynamic_shapes.ShapesCollection[source]#

Builder for dynamic_shapes.Used to assign dynamic shape specifications to tensors that appear in inputs.

This is useful particularly whenargs() is a nested input structure, and it’seasier to index the input tensors, than to replicate the structure ofargs() inthedynamic_shapes() specification.

Example:

args={"x":tensor_x,"others":[tensor_y,tensor_z]}dim=torch.export.Dim(...)dynamic_shapes=torch.export.ShapesCollection()dynamic_shapes[tensor_x]=(dim,dim+1,8)dynamic_shapes[tensor_y]={0:dim*2}# This is equivalent to the following (now auto-generated):# dynamic_shapes = {"x": (dim, dim + 1, 8), "others": [{0: dim * 2}, None]}torch.export(...,args,dynamic_shapes=dynamic_shapes)

To specify dynamism for integers, we need to first wrap the integers using_IntWrapper so that we have a “unique identification tag” for each integer.

Example:

args={"x":tensor_x,"others":[int_x,int_y]}# Wrap all ints with _IntWrappermapped_args=pytree.tree_map_only(int,lambdaa:_IntWrapper(a),args)dynamic_shapes=torch.export.ShapesCollection()dynamic_shapes[tensor_x]=(dim,dim+1,8)dynamic_shapes[mapped_args["others"][0]]=Dim.DYNAMIC# This is equivalent to the following (now auto-generated):# dynamic_shapes = {"x": (dim, dim + 1, 8), "others": [Dim.DYNAMIC, None]}torch.export(...,args,dynamic_shapes=dynamic_shapes)
dynamic_shapes(m,args,kwargs=None)[source]#

Generates thedynamic_shapes() pytree structure according toargs() andkwargs().

torch.export.dynamic_shapes.refine_dynamic_shapes_from_suggested_fixes(msg,dynamic_shapes)[source]#

When exporting withdynamic_shapes(), export may fail with a ConstraintViolation error if the specificationdoesn’t match the constraints inferred from tracing the model. The error message may provide suggested fixes -changes that can be made todynamic_shapes() to export successfully.

Example ConstraintViolation error message:

Suggestedfixes:dim=Dim('dim',min=3,max=6)# this just refines the dim's rangedim=4# this specializes to a constantdy=dx+1# dy was specified as an independent dim, but is actually tied to dx with this relation

This is a helper function that takes the ConstraintViolation error message and the originaldynamic_shapes() spec,and returns a newdynamic_shapes() spec that incorporates the suggested fixes.

Example usage:

try:ep=export(mod,args,dynamic_shapes=dynamic_shapes)excepttorch._dynamo.exc.UserErrorasexc:new_shapes=refine_dynamic_shapes_from_suggested_fixes(exc.msg,dynamic_shapes)ep=export(mod,args,dynamic_shapes=new_shapes)
Return type

Union[dict[str,Any],tuple[Any],list[Any]]

torch.export.save(ep,f,*,extra_files=None,opset_version=None,pickle_protocol=2)[source]#

Warning

Under active development, saved files may not be usable in newer versionsof PyTorch.

Saves anExportedProgram to a file-like object. It can then beloaded using the Python APItorch.export.load.

Parameters
  • ep (ExportedProgram) – The exported program to save.

  • f (str |os.PathLike[str]|IO[bytes]) – implement write and flush) or a string containing a file name.

  • extra_files (Optional[Dict[str,Any]]) – Map from filename to contentswhich will be stored as part of f.

  • opset_version (Optional[Dict[str,int]]) – A map of opset namesto the version of this opset

  • pickle_protocol (int) – can be specified to override the default protocol

Example:

importtorchimportioclassMyModule(torch.nn.Module):defforward(self,x):returnx+10ep=torch.export.export(MyModule(),(torch.randn(5),))# Save to filetorch.export.save(ep,"exported_program.pt2")# Save to io.BytesIO bufferbuffer=io.BytesIO()torch.export.save(ep,buffer)# Save with extra filesextra_files={"foo.txt":b"bar".decode("utf-8")}torch.export.save(ep,"exported_program.pt2",extra_files=extra_files)
torch.export.load(f,*,extra_files=None,expected_opset_version=None)[source]#

Warning

Under active development, saved files may not be usable in newer versionsof PyTorch.

Loads anExportedProgram previously saved withtorch.export.save.

Parameters
  • f (str |os.PathLike[str]|IO[bytes]) – A file-like object (has toimplement write and flush) or a string containing a file name.

  • extra_files (Optional[Dict[str,Any]]) – The extra filenames given inthis map would be loaded and their content would be stored in theprovided map.

  • expected_opset_version (Optional[Dict[str,int]]) – A map of opset namesto expected opset versions

Returns

AnExportedProgram object

Return type

ExportedProgram

Example:

importtorchimportio# Load ExportedProgram from fileep=torch.export.load("exported_program.pt2")# Load ExportedProgram from io.BytesIO objectwithopen("exported_program.pt2","rb")asf:buffer=io.BytesIO(f.read())buffer.seek(0)ep=torch.export.load(buffer)# Load with extra files.extra_files={"foo.txt":""}# values will be replaced with dataep=torch.export.load("exported_program.pt2",extra_files=extra_files)print(extra_files["foo.txt"])print(ep(torch.randn(5)))
torch.export.pt2_archive._package.package_pt2(f,*,exported_programs=None,aoti_files=None,extra_files=None,opset_version=None,pickle_protocol=2)[source]#

Saves the artifacts to a PT2Archive format. The artifact can then be loadedusingload_pt2.

Parameters
  • f (str |os.PathLike[str]|IO[bytes]) – A file-like object (has toimplement write and flush) or a string containing a file name.

  • exported_programs (Union[ExportedProgram,dict[str,ExportedProgram]]) – The exported program to save, or a dictionary mapping model name to anexported program to save. The exported program will be saved undermodels/*.json. If only one ExportedProgram is specified, this willautomatically be named “model”.

  • aoti_files (Union[list[str],dict[str,list[str]]]) – A list of filesgenerated by AOTInductor viatorch._inductor.aot_compile(...,{"aot_inductor.package":True}),or a dictionary mapping model name to its AOTInductor generated files.If only one set of files is specified, this will automatically be named“model”.

  • extra_files (Optional[Dict[str,Any]]) – Map from filename to contentswhich will be stored as part of the pt2.

  • opset_version (Optional[Dict[str,int]]) – A map of opset namesto the version of this opset

  • pickle_protocol (int) – can be specified to override the default protocol

Return type

Union[str,PathLike[str],IO[bytes]]

torch.export.pt2_archive._package.load_pt2(f,*,expected_opset_version=None,run_single_threaded=False,num_runners=1,device_index=-1,load_weights_from_disk=False)[source]#

Loads all the artifacts previously saved withpackage_pt2.

Parameters
  • f (str |os.PathLike[str]|IO[bytes]) – A file-like object (has toimplement write and flush) or a string containing a file name.

  • expected_opset_version (Optional[Dict[str,int]]) – A map of opset namesto expected opset versions

  • num_runners (int) – Number of runners to load AOTInductor artifacts

  • run_single_threaded (bool) – Whether the model should be run withoutthread synchronization logic. This is useful to avoid conflicts withCUDAGraphs.

  • device_index (int) – The index of the device to which the PT2 package isto be loaded. By default,device_index=-1 is used, which correspondsto the devicecuda when using CUDA. Passingdevice_index=1 wouldload the package tocuda:1, for example.

Returns

APT2ArchiveContents object which contains all the objects in the PT2.

Return type

PT2ArchiveContents

torch.export.draft_export(mod,args,kwargs=None,*,dynamic_shapes=None,preserve_module_call_signature=(),strict=False,prefer_deferred_runtime_asserts_over_guards=False)[source]#

A version of torch.export.export which is designed to consistently producean ExportedProgram, even if there are potential soundness issues, and togenerate a report listing the issues found.

Return type

ExportedProgram

classtorch.export.unflatten.FlatArgsAdapter[source]#

Adapts input arguments withinput_spec to aligntarget_spec.

abstractadapt(target_spec,input_spec,input_args,metadata=None,obj=None)[source]#

NOTE: This adapter may mutate giveninput_args_with_path.

Return type

list[Any]

get_flat_arg_paths()[source]#

Returns a list of paths that are used to access the flat args.

Return type

list[str]

classtorch.export.unflatten.InterpreterModule(graph,ty=None)[source]#

A module that uses torch.fx.Interpreter to execute instead of the usualcodegen that GraphModule uses. This provides better stack trace informationand makes it easier to debug execution.

classtorch.export.unflatten.InterpreterModuleDispatcher(attrs,call_modules)[source]#

A module that carries a sequence of InterpreterModules corresponding toa sequence of calls of that module. Each call to the module dispatchesto the next InterpreterModule, and wraps back around after the last.

torch.export.unflatten.unflatten(module,flat_args_adapter=None)[source]#

Unflatten an ExportedProgram, producing a module with the same modulehierarchy as the original eager module. This can be useful if you are tryingto usetorch.export with another system that expects a modulehierarchy instead of the flat graph thattorch.export usually produces.

Note

The args/kwargs of unflattened modules will not necessarily matchthe eager module, so doing a module swap (e.g.self.submod=new_mod) will not necessarily work. If you need to swap a module out, youneed to set thepreserve_module_call_signature parameter oftorch.export.export().

Parameters
  • module (ExportedProgram) – The ExportedProgram to unflatten.

  • flat_args_adapter (Optional[FlatArgsAdapter]) – Adapt flat args if input TreeSpec does not match with exported module’s.

Returns

An instance ofUnflattenedModule, which has the same modulehierarchy as the original eager module pre-export.

Return type

UnflattenedModule

torch.export.register_dataclass(cls,*,serialized_type_name=None)[source]#

Registers a dataclass as a valid input/output type fortorch.export.export().

Parameters
  • cls (type[Any]) – the dataclass type to register

  • serialized_type_name (Optional[str]) – The serialized name for the dataclass. This is

  • this (required if you want to serialize the pytree TreeSpec containing) –

  • dataclass.

Example:

importtorchfromdataclassesimportdataclass@dataclassclassInputDataClass:feature:torch.Tensorbias:int@dataclassclassOutputDataClass:res:torch.Tensortorch.export.register_dataclass(InputDataClass)torch.export.register_dataclass(OutputDataClass)classMod(torch.nn.Module):defforward(self,x:InputDataClass)->OutputDataClass:res=x.feature+x.biasreturnOutputDataClass(res=res)ep=torch.export.export(Mod(),(InputDataClass(torch.ones(2,2),1),))print(ep)
classtorch.export.decomp_utils.CustomDecompTable[source]#

This is a custom dictionary that is specifically used for handling decomp_table in export.The reason we need this is because in the new world, you can onlydelete an op from decomptable to preserve it. This is problematic for custom ops because we don’t know when the customop will actually be loaded to the dispatcher. As a result, we need to record the custom ops operationsuntil we really need to materialize it (which is when we run decomposition pass.)

Invariants we hold are:
  1. All aten decomp is loaded at the init time

  2. We materialize ALL ops when user ever reads from the table to make it more likelythat dispatcher picks up the custom op.

  3. If it is write operation, we don’t necessarily materialize

  4. We load the final time during export, right before calling run_decompositions()

copy()[source]#
Return type

CustomDecompTable

items()[source]#
keys()[source]#
materialize()[source]#
Return type

dict[torch._ops.OperatorBase,Callable]

pop(*args)[source]#
update(other_dict)[source]#
torch.export.passes.move_to_device_pass(ep,location)[source]#

Move the exported program to the given device.

Parameters
  • ep (ExportedProgram) – The exported program to move.

  • location (Union[torch.device,str,Dict[str,str]]) – The device to move the exported program to.If a string, it is interpreted as a device name.If a dict, it is interpreted as a mapping fromthe existing device to the intended one

Returns

The moved exported program.

Return type

ExportedProgram

classtorch.export.pt2_archive.PT2ArchiveReader(archive_path_or_buffer)#

Context manager for reading a PT2 archive.

archive_version()[source]#

Get the archive version.

Return type

int

get_file_names()[source]#

Get the file names in the archive.

Return type

list[str]

read_bytes(name)[source]#

Read a bytes object from the archive.name: The source file inside the archive.

Return type

bytes

read_string(name)[source]#

Read a string object from the archive.name: The source file inside the archive.

Return type

str

classtorch.export.pt2_archive.PT2ArchiveWriter(archive_path_or_buffer)#

Context manager for writing a PT2 archive.

close()[source]#

Close the archive.

count_prefix(prefix)[source]#

Count the number of records that start with a given prefix.

Return type

int

has_record(name)[source]#

Check if a record exists in the archive.

Return type

bool

write_bytes(name,data)[source]#

Write a bytes object to the archive.name: The destination file inside the archive.data: The bytes object to write.

write_file(name,file_path)[source]#

Copy a file into the archive.name: The destination file inside the archive.file_path: The source file on disk.

write_folder(archive_dir,folder_dir)[source]#

Copy a folder into the archive.archive_dir: The destination folder inside the archive.folder_dir: The source folder on disk.

write_string(name,data)[source]#

Write a string object to the archive.name: The destination file inside the archive.data: The string object to write.

torch.export.pt2_archive.is_pt2_package(serialized_model)[source]#

Check if the serialized model is a PT2 Archive package.

Return type

bool

classtorch.export.exported_program.ModuleCallEntry(fqn:str,signature:Optional[torch.export.exported_program.ModuleCallSignature]=None)[source]#
classtorch.export.exported_program.ModuleCallSignature(inputs:list[Union[torch.export.graph_signature.TensorArgument,torch.export.graph_signature.SymIntArgument,torch.export.graph_signature.SymFloatArgument,torch.export.graph_signature.SymBoolArgument,torch.export.graph_signature.ConstantArgument,torch.export.graph_signature.CustomObjArgument,torch.export.graph_signature.TokenArgument]],outputs:list[Union[torch.export.graph_signature.TensorArgument,torch.export.graph_signature.SymIntArgument,torch.export.graph_signature.SymFloatArgument,torch.export.graph_signature.SymBoolArgument,torch.export.graph_signature.ConstantArgument,torch.export.graph_signature.CustomObjArgument,torch.export.graph_signature.TokenArgument]],in_spec:torch.utils._pytree.TreeSpec,out_spec:torch.utils._pytree.TreeSpec,forward_arg_names:Optional[list[str]]=None)[source]#
torch.export.exported_program.default_decompositions()[source]#

This is the default decomposition table which contains decomposition ofall ATEN operators to core aten opset. Use this API together withrun_decompositions()

Return type

CustomDecompTable

classtorch.export.custom_obj.ScriptObjectMeta(constant_name,class_fqn)[source]#

Metadata which is stored on nodes representing ScriptObjects.

classtorch.export.graph_signature.ConstantArgument(name:str,value:Union[int,float,bool,str,NoneType])[source]#
name:str#
value:Optional[Union[int,float,bool,str]]#
classtorch.export.graph_signature.CustomObjArgument(name:str,class_fqn:str,fake_val:Optional[torch._library.fake_class_registry.FakeScriptObject]=None)[source]#
class_fqn:str#
fake_val:Optional[FakeScriptObject]=None#
name:str#
classtorch.export.graph_signature.ExportBackwardSignature(gradients_to_parameters:dict[str,str],gradients_to_user_inputs:dict[str,str],loss_output:str)[source]#
gradients_to_parameters:dict[str,str]#
gradients_to_user_inputs:dict[str,str]#
loss_output:str#
classtorch.export.graph_signature.ExportGraphSignature(input_specs,output_specs)[source]#

ExportGraphSignature models the input/output signature of Export Graph,which is a fx.Graph with stronger invariants guarantees.

Export Graph is functional and does not access “states” like parametersor buffers within the graph viagetattr nodes. Instead,export()guarantees that parameters, buffers, and constant tensors are lifted out ofthe graph as inputs. Similarly, any mutations to buffers are not includedin the graph either, instead the updated values of mutated buffers aremodeled as additional outputs of Export Graph.

The ordering of all inputs and outputs are:

Inputs=[*parameters_buffers_constant_tensors,*flattened_user_inputs]Outputs=[*mutated_inputs,*flattened_user_outputs]

e.g. If following module is exported:

classCustomModule(nn.Module):def__init__(self)->None:super(CustomModule,self).__init__()# Define a parameterself.my_parameter=nn.Parameter(torch.tensor(2.0))# Define two buffersself.register_buffer("my_buffer1",torch.tensor(3.0))self.register_buffer("my_buffer2",torch.tensor(4.0))defforward(self,x1,x2):# Use the parameter, buffers, and both inputs in the forward methodoutput=(x1+self.my_parameter)*self.my_buffer1+x2*self.my_buffer2# Mutate one of the buffers (e.g., increment it by 1)self.my_buffer2.add_(1.0)# In-place additionreturnoutputmod=CustomModule()ep=torch.export.export(mod,(torch.tensor(1.0),torch.tensor(2.0)))

Resulting Graph is non-functional:

graph():%p_my_parameter:[num_users=1]=placeholder[target=p_my_parameter]%b_my_buffer1:[num_users=1]=placeholder[target=b_my_buffer1]%b_my_buffer2:[num_users=2]=placeholder[target=b_my_buffer2]%x1:[num_users=1]=placeholder[target=x1]%x2:[num_users=1]=placeholder[target=x2]%add:[num_users=1]=call_function[target=torch.ops.aten.add.Tensor](args=(%x1,%p_my_parameter),kwargs={})%mul:[num_users=1]=call_function[target=torch.ops.aten.mul.Tensor](args=(%add,%b_my_buffer1),kwargs={})%mul_1:[num_users=1]=call_function[target=torch.ops.aten.mul.Tensor](args=(%x2,%b_my_buffer2),kwargs={})%add_1:[num_users=1]=call_function[target=torch.ops.aten.add.Tensor](args=(%mul,%mul_1),kwargs={})%add_:[num_users=0]=call_function[target=torch.ops.aten.add_.Tensor](args=(%b_my_buffer2,1.0),kwargs={})return(add_1,)

Resulting ExportGraphSignature of the non-functional Graph would be:

# inputsp_my_parameter:PARAMETERtarget='my_parameter'b_my_buffer1:BUFFERtarget='my_buffer1'persistent=Trueb_my_buffer2:BUFFERtarget='my_buffer2'persistent=Truex1:USER_INPUTx2:USER_INPUT# outputsadd_1:USER_OUTPUT

To get a functional Graph, you can userun_decompositions():

mod=CustomModule()ep=torch.export.export(mod,(torch.tensor(1.0),torch.tensor(2.0)))ep=ep.run_decompositions()

Resulting Graph is functional:

graph():%p_my_parameter:[num_users=1]=placeholder[target=p_my_parameter]%b_my_buffer1:[num_users=1]=placeholder[target=b_my_buffer1]%b_my_buffer2:[num_users=2]=placeholder[target=b_my_buffer2]%x1:[num_users=1]=placeholder[target=x1]%x2:[num_users=1]=placeholder[target=x2]%add:[num_users=1]=call_function[target=torch.ops.aten.add.Tensor](args=(%x1,%p_my_parameter),kwargs={})%mul:[num_users=1]=call_function[target=torch.ops.aten.mul.Tensor](args=(%add,%b_my_buffer1),kwargs={})%mul_1:[num_users=1]=call_function[target=torch.ops.aten.mul.Tensor](args=(%x2,%b_my_buffer2),kwargs={})%add_1:[num_users=1]=call_function[target=torch.ops.aten.add.Tensor](args=(%mul,%mul_1),kwargs={})%add_2:[num_users=1]=call_function[target=torch.ops.aten.add.Tensor](args=(%b_my_buffer2,1.0),kwargs={})return(add_2,add_1)

Resulting ExportGraphSignature of the functional Graph would be:

# inputsp_my_parameter:PARAMETERtarget='my_parameter'b_my_buffer1:BUFFERtarget='my_buffer1'persistent=Trueb_my_buffer2:BUFFERtarget='my_buffer2'persistent=Truex1:USER_INPUTx2:USER_INPUT# outputsadd_2:BUFFER_MUTATIONtarget='my_buffer2'add_1:USER_OUTPUT
propertyassertion_dep_token:Optional[Mapping[int,str]]#
propertybackward_signature:Optional[ExportBackwardSignature]#
propertybuffers:Collection[str]#
propertybuffers_to_mutate:Mapping[str,str]#
get_replace_hook(replace_inputs=False)[source]#
input_specs:list[torch.export.graph_signature.InputSpec]#
propertyinput_tokens:Collection[str]#
propertyinputs_to_buffers:Mapping[str,str]#
propertyinputs_to_lifted_custom_objs:Mapping[str,str]#
propertyinputs_to_lifted_tensor_constants:Mapping[str,str]#
propertyinputs_to_parameters:Mapping[str,str]#
propertylifted_custom_objs:Collection[str]#
propertylifted_tensor_constants:Collection[str]#
propertynon_persistent_buffers:Collection[str]#
output_specs:list[torch.export.graph_signature.OutputSpec]#
propertyoutput_tokens:Collection[str]#
propertyparameters:Collection[str]#
propertyparameters_to_mutate:Mapping[str,str]#
replace_all_uses(old,new)[source]#

Replace all uses of the old name with new name in the signature.

propertyuser_inputs:Collection[Union[int,float,bool,None,str]]#
propertyuser_inputs_to_mutate:Mapping[str,str]#
propertyuser_outputs:Collection[Union[int,float,bool,None,str]]#
classtorch.export.graph_signature.InputKind(value)[source]#

An enumeration.

BUFFER=3#
CONSTANT_TENSOR=4#
CUSTOM_OBJ=5#
PARAMETER=2#
TOKEN=6#
USER_INPUT=1#
classtorch.export.graph_signature.InputSpec(kind:torch.export.graph_signature.InputKind,arg:Union[torch.export.graph_signature.TensorArgument,torch.export.graph_signature.SymIntArgument,torch.export.graph_signature.SymFloatArgument,torch.export.graph_signature.SymBoolArgument,torch.export.graph_signature.ConstantArgument,torch.export.graph_signature.CustomObjArgument,torch.export.graph_signature.TokenArgument],target:Optional[str],persistent:Optional[bool]=None)[source]#
arg:Union[TensorArgument,SymIntArgument,SymFloatArgument,SymBoolArgument,ConstantArgument,CustomObjArgument,TokenArgument]#
kind:InputKind#
persistent:Optional[bool]=None#
target:Optional[str]#
classtorch.export.graph_signature.OutputKind(value)[source]#

An enumeration.

BUFFER_MUTATION=3#
GRADIENT_TO_PARAMETER=5#
GRADIENT_TO_USER_INPUT=6#
LOSS_OUTPUT=2#
PARAMETER_MUTATION=4#
TOKEN=8#
USER_INPUT_MUTATION=7#
USER_OUTPUT=1#
classtorch.export.graph_signature.OutputSpec(kind:torch.export.graph_signature.OutputKind,arg:Union[torch.export.graph_signature.TensorArgument,torch.export.graph_signature.SymIntArgument,torch.export.graph_signature.SymFloatArgument,torch.export.graph_signature.SymBoolArgument,torch.export.graph_signature.ConstantArgument,torch.export.graph_signature.CustomObjArgument,torch.export.graph_signature.TokenArgument],target:Optional[str])[source]#
arg:Union[TensorArgument,SymIntArgument,SymFloatArgument,SymBoolArgument,ConstantArgument,CustomObjArgument,TokenArgument]#
kind:OutputKind#
target:Optional[str]#
classtorch.export.graph_signature.SymBoolArgument(name:str)[source]#
name:str#
classtorch.export.graph_signature.SymFloatArgument(name:str)[source]#
name:str#
classtorch.export.graph_signature.SymIntArgument(name:str)[source]#
name:str#
classtorch.export.graph_signature.TensorArgument(name:str)[source]#
name:str#
classtorch.export.graph_signature.TokenArgument(name:str)[source]#
name:str#
On this page