RNNCell#
- classtorch.nn.modules.rnn.RNNCell(input_size,hidden_size,bias=True,nonlinearity='tanh',device=None,dtype=None)[source]#
An Elman RNN cell with tanh or ReLU non-linearity.
If
nonlinearityis‘relu’, then ReLU is used in place of tanh.- Parameters
input_size (int) – The number of expected features in the inputx
hidden_size (int) – The number of features in the hidden stateh
bias (bool) – If
False, then the layer does not use bias weightsb_ih andb_hh.Default:Truenonlinearity (str) – The non-linearity to use. Can be either
'tanh'or'relu'. Default:'tanh'
- Inputs: input, hidden
input: tensor containing input features
hidden: tensor containing the initial hidden stateDefaults to zero if not provided.
- Outputs: h’
h’ of shape(batch, hidden_size): tensor containing the next hidden statefor each element in the batch
- Shape:
input: or tensor containing input features where =input_size.
hidden: or tensor containing the initial hiddenstate where =hidden_size. Defaults to zero if not provided.
output: or tensor containing the next hidden state.
- Variables
weight_ih (torch.Tensor) – the learnable input-hidden weights, of shape(hidden_size, input_size)
weight_hh (torch.Tensor) – the learnable hidden-hidden weights, of shape(hidden_size, hidden_size)
bias_ih – the learnable input-hidden bias, of shape(hidden_size)
bias_hh – the learnable hidden-hidden bias, of shape(hidden_size)
Note
All the weights and biases are initialized fromwhere
Examples:
>>>rnn=nn.RNNCell(10,20)>>>input=torch.randn(6,3,10)>>>hx=torch.randn(3,20)>>>output=[]>>>foriinrange(6):...hx=rnn(input[i],hx)...output.append(hx)