Rate this Page

torch.jit.script#

torch.jit.script(obj,optimize=None,_frames_up=0,_rcb=None,example_inputs=None)[source]#

Script the function.

Scripting a function ornn.Module will inspect the source code, compileit as TorchScript code using the TorchScript compiler, and return aScriptModule orScriptFunction. TorchScript itself is a subset of the Python language, so not allfeatures in Python work, but we provide enough functionality to compute ontensors and do control-dependent operations. For a complete guide, see theTorchScript Language Reference.

Scripting a dictionary or list copies the data inside it into a TorchScript instance than can besubsequently passed by reference between Python and TorchScript with zero copy overhead.

torch.jit.script can be used as a function for modules, functions, dictionaries and lists

and as a decorator@torch.jit.script for torchscript-classes and functions.

Parameters
  • obj (Callable,class, ornn.Module) – Thenn.Module, function, class type,dictionary, or list to compile.

  • example_inputs (Union[List[Tuple],Dict[Callable,List[Tuple]],None]) – Provide example inputsto annotate the arguments for a function ornn.Module.

Returns

Ifobj isnn.Module,script returnsaScriptModule object. The returnedScriptModule willhave the same set of sub-modules and parameters as theoriginalnn.Module. Ifobj is a standalone function,aScriptFunction will be returned. Ifobj is adict, thenscript returns an instance oftorch._C.ScriptDict. Ifobj is alist,thenscript returns an instance oftorch._C.ScriptList.

Scripting a function

The@torch.jit.script decorator will construct aScriptFunctionby compiling the body of the function.

Example (scripting a function):

importtorch@torch.jit.scriptdeffoo(x,y):ifx.max()>y.max():r=xelse:r=yreturnrprint(type(foo))# torch.jit.ScriptFunction# See the compiled graph as Python codeprint(foo.code)# Call the function using the TorchScript interpreterfoo(torch.ones(2,2),torch.ones(2,2))
**Scripting a function using example_inputs

Example inputs can be used to annotate a function arguments.

Example (annotating a function before scripting):

importtorchdeftest_sum(a,b):returna+b# Annotate the arguments to be intscripted_fn=torch.jit.script(test_sum,example_inputs=[(3,4)])print(type(scripted_fn))# torch.jit.ScriptFunction# See the compiled graph as Python codeprint(scripted_fn.code)# Call the function using the TorchScript interpreterscripted_fn(20,100)
Scripting an nn.Module

Scripting annn.Module by default will compile theforward method and recursivelycompile any methods, submodules, and functions called byforward. If ann.Module only usesfeatures supported in TorchScript, no changes to the original module code should be necessary.scriptwill constructScriptModule that has copies of the attributes, parameters, and methods ofthe original module.

Example (scripting a simple module with a Parameter):

importtorchclassMyModule(torch.nn.Module):def__init__(self,N,M):super().__init__()# This parameter will be copied to the new ScriptModuleself.weight=torch.nn.Parameter(torch.rand(N,M))# When this submodule is used, it will be compiledself.linear=torch.nn.Linear(N,M)defforward(self,input):output=self.weight.mv(input)# This calls the `forward` method of the `nn.Linear` module, which will# cause the `self.linear` submodule to be compiled to a `ScriptModule` hereoutput=self.linear(output)returnoutputscripted_module=torch.jit.script(MyModule(2,3))

Example (scripting a module with traced submodules):

importtorchimporttorch.nnasnnimporttorch.nn.functionalasFclassMyModule(nn.Module):def__init__(self)->None:super().__init__()# torch.jit.trace produces a ScriptModule's conv1 and conv2self.conv1=torch.jit.trace(nn.Conv2d(1,20,5),torch.rand(1,1,16,16))self.conv2=torch.jit.trace(nn.Conv2d(20,20,5),torch.rand(1,20,16,16))defforward(self,input):input=F.relu(self.conv1(input))input=F.relu(self.conv2(input))returninputscripted_module=torch.jit.script(MyModule())

To compile a method other thanforward (and recursively compile anything it calls), addthe@torch.jit.export decorator to the method. To opt out of compilationuse@torch.jit.ignore or@torch.jit.unused.

Example (an exported and ignored method in a module):

importtorchimporttorch.nnasnnclassMyModule(nn.Module):def__init__(self)->None:super().__init__()@torch.jit.exportdefsome_entry_point(self,input):returninput+10@torch.jit.ignoredefpython_only_fn(self,input):# This function won't be compiled, so any# Python APIs can be usedimportpdbpdb.set_trace()defforward(self,input):ifself.training:self.python_only_fn(input)returninput*99scripted_module=torch.jit.script(MyModule())print(scripted_module.some_entry_point(torch.randn(2,2)))print(scripted_module(torch.randn(2,2)))

Example ( Annotating forward of nn.Module using example_inputs):

importtorchimporttorch.nnasnnfromtypingimportNamedTupleclassMyModule(NamedTuple):result:List[int]classTestNNModule(torch.nn.Module):defforward(self,a)->MyModule:result=MyModule(result=a)returnresultpdt_model=TestNNModule()# Runs the pdt_model in eager model with the inputs provided and annotates the arguments of forwardscripted_model=torch.jit.script(pdt_model,example_inputs={pdt_model:[([10,20,],),],})# Run the scripted_model with actual inputsprint(scripted_model([20]))