torch.randperm#
- torch.randperm(n,*,generator=None,out=None,dtype=torch.int64,layout=torch.strided,device=None,requires_grad=False,pin_memory=False)→Tensor#
Returns a random permutation of integers from
0ton-1.- Parameters
n (int) – the upper bound (exclusive)
- Keyword Arguments
generator (
torch.Generator, optional) – a pseudorandom number generator for samplingout (Tensor,optional) – the output tensor.
dtype (
torch.dtype, optional) – the desired data type of returned tensor.Default:torch.int64.layout (
torch.layout, optional) – the desired layout of returned Tensor.Default:torch.strided.device (
torch.device, optional) – the desired device of returned tensor.Default: ifNone, uses the current device for the default tensor type(seetorch.set_default_device()).devicewill be the CPUfor CPU tensor types and the current CUDA device for CUDA tensor types.requires_grad (bool,optional) – If autograd should record operations on thereturned tensor. Default:
False.pin_memory (bool,optional) – If set, returned tensor would be allocated inthe pinned memory. Works only for CPU tensors. Default:
False.
Example:
>>>torch.randperm(4)tensor([2, 1, 0, 3])