torch.rand#
- torch.rand(*size,*,generator=None,out=None,dtype=None,layout=torch.strided,device=None,requires_grad=False,pin_memory=False)→Tensor#
Returns a tensor filled with random numbers from a uniform distributionon the interval
The shape of the tensor is defined by the variable argument
size.- Parameters
size (int...) – a sequence of integers defining the shape of the output tensor.Can be a variable number of arguments or a collection like a list or tuple.
- Keyword Arguments
generator (
torch.Generator, optional) – a pseudorandom number generator for samplingout (Tensor,optional) – the output tensor.
dtype (
torch.dtype, optional) – the desired data type of returned tensor.Default: ifNone, uses a global default (seetorch.set_default_dtype()).layout (
torch.layout, optional) – the desired layout of returned Tensor.Default:torch.strided.device (
torch.device, optional) – the desired device of returned tensor.Default: ifNone, uses the current device for the default tensor type(seetorch.set_default_device()).devicewill be the CPUfor CPU tensor types and the current CUDA device for CUDA tensor types.requires_grad (bool,optional) – If autograd should record operations on thereturned tensor. Default:
False.pin_memory (bool,optional) – If set, returned tensor would be allocated inthe pinned memory. Works only for CPU tensors. Default:
False.
Example:
>>>torch.rand(4)tensor([ 0.5204, 0.2503, 0.3525, 0.5673])>>>torch.rand(2,3)tensor([[ 0.8237, 0.5781, 0.6879], [ 0.3816, 0.7249, 0.0998]])