StepLR#
- classtorch.optim.lr_scheduler.StepLR(optimizer,step_size,gamma=0.1,last_epoch=-1)[source]#
Decays the learning rate of each parameter group by gamma every step_size epochs.
Notice that such decay can happen simultaneously with other changes to the learning ratefrom outside this scheduler. When last_epoch=-1, sets initial lr as lr.
- Parameters
Example
>>># Assuming optimizer uses lr = 0.05 for all groups>>># lr = 0.05 if epoch < 30>>># lr = 0.005 if 30 <= epoch < 60>>># lr = 0.0005 if 60 <= epoch < 90>>># ...>>>scheduler=StepLR(optimizer,step_size=30,gamma=0.1)>>>forepochinrange(100):>>>train(...)>>>validate(...)>>>scheduler.step()

- load_state_dict(state_dict)[source]#
Load the scheduler’s state.
- Parameters
state_dict (dict) – scheduler state. Should be an object returnedfrom a call to
state_dict().