SequentialLR#
- classtorch.optim.lr_scheduler.SequentialLR(optimizer,schedulers,milestones,last_epoch=-1)[source]#
Contains a list of schedulers expected to be called sequentially during the optimization process.
Specifically, the schedulers will be called according to the milestone points, which should provide exactintervals by which each scheduler should be called at a given epoch.
- Parameters
Example
>>># Assuming optimizer uses lr = 0.05 for all groups>>># lr = 0.005 if epoch == 0>>># lr = 0.005 if epoch == 1>>># lr = 0.005 if epoch == 2>>># ...>>># lr = 0.05 if epoch == 20>>># lr = 0.045 if epoch == 21>>># lr = 0.0405 if epoch == 22>>>scheduler1=ConstantLR(optimizer,factor=0.1,total_iters=20)>>>scheduler2=ExponentialLR(optimizer,gamma=0.9)>>>scheduler=SequentialLR(...optimizer,...schedulers=[scheduler1,scheduler2],...milestones=[20],...)>>>forepochinrange(100):>>>train(...)>>>validate(...)>>>scheduler.step()

- load_state_dict(state_dict)[source]#
Load the scheduler’s state.
- Parameters
state_dict (dict) – scheduler state. Should be an object returnedfrom a call to
state_dict().
- recursive_undo(sched=None)[source]#
Recursively undo any step performed by the initialisation ofschedulers.