Rate this Page

GRUCell#

classtorch.nn.modules.rnn.GRUCell(input_size,hidden_size,bias=True,device=None,dtype=None)[source]#

A gated recurrent unit (GRU) cell.

r=σ(Wirx+bir+Whrh+bhr)z=σ(Wizx+biz+Whzh+bhz)n=tanh(Winx+bin+r(Whnh+bhn))h=(1z)n+zh\begin{array}{ll}r = \sigma(W_{ir} x + b_{ir} + W_{hr} h + b_{hr}) \\z = \sigma(W_{iz} x + b_{iz} + W_{hz} h + b_{hz}) \\n = \tanh(W_{in} x + b_{in} + r \odot (W_{hn} h + b_{hn})) \\h' = (1 - z) \odot n + z \odot h\end{array}

whereσ\sigma is the sigmoid function, and\odot is the Hadamard product.

Parameters
  • input_size (int) – The number of expected features in the inputx

  • hidden_size (int) – The number of features in the hidden stateh

  • bias (bool) – IfFalse, then the layer does not use bias weightsb_ih andb_hh. Default:True

Inputs: input, hidden
  • input : tensor containing input features

  • hidden : tensor containing the initial hiddenstate for each element in the batch.Defaults to zero if not provided.

Outputs: h’
  • h’ : tensor containing the next hidden statefor each element in the batch

Shape:
  • input:(N,Hin)(N, H_{in}) or(Hin)(H_{in}) tensor containing input features whereHinH_{in} =input_size.

  • hidden:(N,Hout)(N, H_{out}) or(Hout)(H_{out}) tensor containing the initial hiddenstate whereHoutH_{out} =hidden_size. Defaults to zero if not provided.

  • output:(N,Hout)(N, H_{out}) or(Hout)(H_{out}) tensor containing the next hidden state.

Variables
  • weight_ih (torch.Tensor) – the learnable input-hidden weights, of shape(3*hidden_size, input_size)

  • weight_hh (torch.Tensor) – the learnable hidden-hidden weights, of shape(3*hidden_size, hidden_size)

  • bias_ih – the learnable input-hidden bias, of shape(3*hidden_size)

  • bias_hh – the learnable hidden-hidden bias, of shape(3*hidden_size)

Note

All the weights and biases are initialized fromU(k,k)\mathcal{U}(-\sqrt{k}, \sqrt{k})wherek=1hidden_sizek = \frac{1}{\text{hidden\_size}}

On certain ROCm devices, when using float16 inputs this module will usedifferent precision for backward.

Examples:

>>>rnn=nn.GRUCell(10,20)>>>input=torch.randn(6,3,10)>>>hx=torch.randn(3,20)>>>output=[]>>>foriinrange(6):...hx=rnn(input[i],hx)...output.append(hx)