Rate this Page

ReplicationPad1d#

classtorch.nn.modules.padding.ReplicationPad1d(padding)[source]#

Pads the input tensor using replication of the input boundary.

ForN-dimensional padding, usetorch.nn.functional.pad().

Parameters

padding (int,tuple) – the size of the padding. If isint, uses the samepadding in all boundaries. If a 2-tuple, uses(padding_left\text{padding\_left},padding_right\text{padding\_right})Note that the output dimensions must remain positive.

Shape:

Examples:

>>>m=nn.ReplicationPad1d(2)>>>input=torch.arange(8,dtype=torch.float).reshape(1,2,4)>>>inputtensor([[[0., 1., 2., 3.],         [4., 5., 6., 7.]]])>>>m(input)tensor([[[0., 0., 0., 1., 2., 3., 3., 3.],         [4., 4., 4., 5., 6., 7., 7., 7.]]])>>># using different paddings for different sides>>>m=nn.ReplicationPad1d((3,1))>>>m(input)tensor([[[0., 0., 0., 0., 1., 2., 3., 3.],         [4., 4., 4., 4., 5., 6., 7., 7.]]])