GroupNorm#
- classtorch.nn.modules.normalization.GroupNorm(num_groups,num_channels,eps=1e-05,affine=True,device=None,dtype=None)[source]#
Applies Group Normalization over a mini-batch of inputs.
This layer implements the operation as described inthe paperGroup Normalization
The input channels are separated into
num_groupsgroups, each containingnum_channels/num_groupschannels.num_channelsmust be divisible bynum_groups. The mean and standard-deviation are calculatedseparately over each group. and are learnableper-channel affine transform parameter vectors of sizenum_channelsifaffineisTrue.The variance is calculated via the biased estimator, equivalent totorch.var(input, unbiased=False).This layer uses statistics computed from input data in both training andevaluation modes.
- Parameters
num_groups (int) – number of groups to separate the channels into
num_channels (int) – number of channels expected in input
eps (float) – a value added to the denominator for numerical stability. Default: 1e-5
affine (bool) – a boolean value that when set to
True, this modulehas learnable per-channel affine parameters initialized to ones (for weights)and zeros (for biases). Default:True.
- Shape:
Input: where
Output: (same shape as input)
Examples:
>>>input=torch.randn(20,6,10,10)>>># Separate 6 channels into 3 groups>>>m=nn.GroupNorm(3,6)>>># Separate 6 channels into 6 groups (equivalent with InstanceNorm)>>>m=nn.GroupNorm(6,6)>>># Put all 6 channels into a single group (equivalent with LayerNorm)>>>m=nn.GroupNorm(1,6)>>># Activating the module>>>output=m(input)