Rate this Page

torch.nn.functional.normalize#

torch.nn.functional.normalize(input,p=2.0,dim=1,eps=1e-12,out=None)[source]#

PerformLpL_p normalization of inputs over specified dimension.

For a tensorinput of sizes(n0,...,ndim,...,nk)(n_0, ..., n_{dim}, ..., n_k), eachndimn_{dim} -element vectorvv along dimensiondim is transformed as

v=vmax(vp,ϵ).v = \frac{v}{\max(\lVert v \rVert_p, \epsilon)}.

With the default arguments it uses the Euclidean norm over vectors along dimension11 for normalization.

Parameters
  • input (Tensor) – input tensor of any shape

  • p (float) – the exponent value in the norm formulation. Default: 2

  • dim (int ortuple ofints) – the dimension to reduce. Default: 1

  • eps (float) – small value to avoid division by zero. Default: 1e-12

  • out (Tensor,optional) – the output tensor. Ifout is used, thisoperation won’t be differentiable.

Return type

Tensor