Rate this Page
★★★★★
ConstantPad1d#
- classtorch.nn.ConstantPad1d(padding,value)[source]#
Pads the input tensor boundaries with a constant value.
ForN-dimensional padding, use
torch.nn.functional.pad().- Parameters
padding (int,tuple) – the size of the padding. If isint, uses the samepadding in both boundaries. If a 2-tuple, uses(,)
- Shape:
Input: or.
Output: or, where
Examples:
>>>m=nn.ConstantPad1d(2,3.5)>>>input=torch.randn(1,2,4)>>>inputtensor([[[-1.0491, -0.7152, -0.0749, 0.8530], [-1.3287, 1.8966, 0.1466, -0.2771]]])>>>m(input)tensor([[[ 3.5000, 3.5000, -1.0491, -0.7152, -0.0749, 0.8530, 3.5000, 3.5000], [ 3.5000, 3.5000, -1.3287, 1.8966, 0.1466, -0.2771, 3.5000, 3.5000]]])>>>m=nn.ConstantPad1d(2,3.5)>>>input=torch.randn(1,2,3)>>>inputtensor([[[ 1.6616, 1.4523, -1.1255], [-3.6372, 0.1182, -1.8652]]])>>>m(input)tensor([[[ 3.5000, 3.5000, 1.6616, 1.4523, -1.1255, 3.5000, 3.5000], [ 3.5000, 3.5000, -3.6372, 0.1182, -1.8652, 3.5000, 3.5000]]])>>># using different paddings for different sides>>>m=nn.ConstantPad1d((3,1),3.5)>>>m(input)tensor([[[ 3.5000, 3.5000, 3.5000, 1.6616, 1.4523, -1.1255, 3.5000], [ 3.5000, 3.5000, 3.5000, -3.6372, 0.1182, -1.8652, 3.5000]]])
On this page