Rate this Page

AdaptiveMaxPool2d#

classtorch.nn.AdaptiveMaxPool2d(output_size,return_indices=False)[source]#

Applies a 2D adaptive max pooling over an input signal composed of several input planes.

The output is of sizeHout×WoutH_{out} \times W_{out}, for any input size.The number of output features is equal to the number of input planes.

Parameters:
  • output_size (int |None |tuple[int |None,int |None]) – the target output size of the image of the formHout×WoutH_{out} \times W_{out}.Can be a tuple(Hout,Wout)(H_{out}, W_{out}) or a singleHoutH_{out} for asquare imageHout×HoutH_{out} \times H_{out}.HoutH_{out} andWoutW_{out}can be either aint, orNone which means the size will be the same as thatof the input.

  • return_indices (bool) – ifTrue, will return the indices along with the outputs.Useful to pass to nn.MaxUnpool2d. Default:False

Shape:

Examples

>>># target output size of 5x7>>>m=nn.AdaptiveMaxPool2d((5,7))>>>input=torch.randn(1,64,8,9)>>>output=m(input)>>># target output size of 7x7 (square)>>>m=nn.AdaptiveMaxPool2d(7)>>>input=torch.randn(1,64,10,9)>>>output=m(input)>>># target output size of 10x7>>>m=nn.AdaptiveMaxPool2d((None,7))>>>input=torch.randn(1,64,10,9)>>>output=m(input)
forward(input)[source]#

Runs the forward pass.