torch.logspace#
- torch.logspace(start,end,steps,base=10.0,*,out=None,dtype=None,layout=torch.strided,device=None,requires_grad=False)→Tensor#
Creates a one-dimensional tensor of size
stepswhose values are evenlyspaced from to, inclusive, on a logarithmic scalewith basebase. That is, the values are:From PyTorch 1.11 logspace requires the steps argument. Use steps=100 to restore the previous behavior.
- Parameters
start (float orTensor) – the starting value for the set of points. IfTensor, it must be 0-dimensional
end (float orTensor) – the ending value for the set of points. IfTensor, it must be 0-dimensional
steps (int) – size of the constructed tensor
base (float,optional) – base of the logarithm function. Default:
10.0.
- Keyword Arguments
out (Tensor,optional) – the output tensor.
dtype (torch.dtype,optional) – the data type to perform the computation in.Default: if None, uses the global default dtype (see torch.get_default_dtype())when both
startandendare real,and corresponding complex dtype when either is complex.layout (
torch.layout, optional) – the desired layout of returned Tensor.Default:torch.strided.device (
torch.device, optional) – the desired device of returned tensor.Default: ifNone, uses the current device for the default tensor type(seetorch.set_default_device()).devicewill be the CPUfor CPU tensor types and the current CUDA device for CUDA tensor types.requires_grad (bool,optional) – If autograd should record operations on thereturned tensor. Default:
False.
Example:
>>>torch.logspace(start=-10,end=10,steps=5)tensor([ 1.0000e-10, 1.0000e-05, 1.0000e+00, 1.0000e+05, 1.0000e+10])>>>torch.logspace(start=0.1,end=1.0,steps=5)tensor([ 1.2589, 2.1135, 3.5481, 5.9566, 10.0000])>>>torch.logspace(start=0.1,end=1.0,steps=1)tensor([1.2589])>>>torch.logspace(start=2,end=2,steps=1,base=2)tensor([4.0])