torch.linalg.lu#
- torch.linalg.lu(A,*,pivot=True,out=None)#
Computes the LU decomposition with partial pivoting of a matrix.
Letting be or,theLU decomposition with partial pivoting of a matrix is defined as
wherek = min(m,n), is apermutation matrix, is lower triangular with ones on the diagonaland is upper triangular.
If
pivot= False andAis on GPU, then theLU decomposition without pivoting is computedWhen
pivot= False, the returned matrixPwill be empty.The LU decomposition without pivotingmay not exist if any of the principal minors ofAis singular.In this case, the output matrix may containinf orNaN.Supports input of float, double, cfloat and cdouble dtypes.Also supports batches of matrices, and if
Ais a batch of matrices thenthe output has the same batch dimensions.See also
torch.linalg.solve()solves a system of linear equations using the LU decompositionwith partial pivoting.Warning
The LU decomposition is almost never unique, as often there are different permutationmatrices that can yield different LU decompositions.As such, different platforms, like SciPy, or inputs on different devices,may produce different valid decompositions.
Warning
Gradient computations are only supported if the input matrix is full-rank.If this condition is not met, no error will be thrown, but the gradientmay not be finite.This is because the LU decomposition with pivoting is not differentiable at these points.
- Parameters
- Keyword Arguments
out (tuple,optional) – output tuple of three tensors. Ignored ifNone. Default:None.
- Returns
A named tuple(P, L, U).
Examples:
>>>A=torch.randn(3,2)>>>P,L,U=torch.linalg.lu(A)>>>Ptensor([[0., 1., 0.], [0., 0., 1.], [1., 0., 0.]])>>>Ltensor([[1.0000, 0.0000], [0.5007, 1.0000], [0.0633, 0.9755]])>>>Utensor([[0.3771, 0.0489], [0.0000, 0.9644]])>>>torch.dist(A,P@L@U)tensor(5.9605e-08)>>>A=torch.randn(2,5,7,device="cuda")>>>P,L,U=torch.linalg.lu(A,pivot=False)>>>Ptensor([], device='cuda:0')>>>torch.dist(A,L@U)tensor(1.0376e-06, device='cuda:0')