torch.kaiser_window#
- torch.kaiser_window(window_length,periodic=True,beta=12.0,*,dtype=None,layout=torch.strided,device=None,requires_grad=False)→Tensor#
Computes the Kaiser window with window length
window_lengthand shape parameterbeta.Let I_0 be the zeroth order modified Bessel function of the first kind (see
torch.i0()) andN=L-1ifperiodicis False andLifperiodicis True,whereLis thewindow_length. This function computes:Calling
torch.kaiser_window(L,B,periodic=True)is equivalent to callingtorch.kaiser_window(L+1,B,periodic=False)[:-1]).Theperiodicargument is intended as a helpful shorthandto produce a periodic window as input to functions liketorch.stft().Note
If
window_lengthis one, then the returned window is a single element tensor containing a one.- Parameters
- Keyword Arguments
dtype (
torch.dtype, optional) – the desired data type of returned tensor.Default: ifNone, uses a global default (seetorch.set_default_dtype()).layout (
torch.layout, optional) – the desired layout of returned window tensor. Onlytorch.strided(dense layout) is supported.device (
torch.device, optional) – the desired device of returned tensor.Default: ifNone, uses the current device for the default tensor type(seetorch.set_default_device()).devicewill be the CPUfor CPU tensor types and the current CUDA device for CUDA tensor types.requires_grad (bool,optional) – If autograd should record operations on thereturned tensor. Default:
False.