torch.fake_quantize_per_tensor_affine#
- torch.fake_quantize_per_tensor_affine(input,scale,zero_point,quant_min,quant_max)→Tensor#
Returns a new tensor with the data in
inputfake quantized usingscale,zero_point,quant_minandquant_max.- Parameters
input (Tensor) – the input value(s),
torch.float32tensorscale (double scalar or
float32Tensor) – quantization scalezero_point (int64 scalar or
int32Tensor) – quantization zero_pointquant_min (int64) – lower bound of the quantized domain
quant_max (int64) – upper bound of the quantized domain
- Returns
A newly fake_quantized
torch.float32tensor- Return type
Example:
>>>x=torch.randn(4)>>>xtensor([ 0.0552, 0.9730, 0.3973, -1.0780])>>>torch.fake_quantize_per_tensor_affine(x,0.1,0,0,255)tensor([0.1000, 1.0000, 0.4000, 0.0000])>>>torch.fake_quantize_per_tensor_affine(x,torch.tensor(0.1),torch.tensor(0),0,255)tensor([0.1000, 1.0000, 0.4000, 0.0000])