torch.empty_strided#
- torch.empty_strided(size,stride,*,dtype=None,layout=None,device=None,requires_grad=False,pin_memory=False)→Tensor#
Creates a tensor with the specified
sizeandstrideand filled with undefined data.Warning
If the constructed tensor is “overlapped” (with multiple indices referring to the same elementin memory) its behavior is undefined.
Note
If
torch.use_deterministic_algorithms()andtorch.utils.deterministic.fill_uninitialized_memoryare both set toTrue, the output tensor is initialized to prevent any possiblenondeterministic behavior from using the data as an input to an operation.Floating point and complex tensors are filled with NaN, and integer tensorsare filled with the maximum value.- Parameters
- Keyword Arguments
dtype (
torch.dtype, optional) – the desired data type of returned tensor.Default: ifNone, uses a global default (seetorch.set_default_dtype()).layout (
torch.layout, optional) – the desired layout of returned Tensor.Default:torch.strided.device (
torch.device, optional) – the desired device of returned tensor.Default: ifNone, uses the current device for the default tensor type(seetorch.set_default_device()).devicewill be the CPUfor CPU tensor types and the current CUDA device for CUDA tensor types.requires_grad (bool,optional) – If autograd should record operations on thereturned tensor. Default:
False.pin_memory (bool,optional) – If set, returned tensor would be allocated inthe pinned memory. Works only for CPU tensors. Default:
False.
Example:
>>>a=torch.empty_strided((2,3),(1,2))>>>atensor([[8.9683e-44, 4.4842e-44, 5.1239e+07], [0.0000e+00, 0.0000e+00, 3.0705e-41]])>>>a.stride()(1, 2)>>>a.size()torch.Size([2, 3])