torch.dsplit#
- torch.dsplit(input,indices_or_sections)→ListofTensors#
Splits
input, a tensor with three or more dimensions, into multiple tensorsdepthwise according toindices_or_sections. Each split is a view ofinput.This is equivalent to calling torch.tensor_split(input, indices_or_sections, dim=2)(the split dimension is 2), except that if
indices_or_sectionsis an integerit must evenly divide the split dimension or a runtime error will be thrown.This function is based on NumPy’s
numpy.dsplit().- Parameters
input (Tensor) – tensor to split.
indices_or_sections (int orlist ortuple ofints) – See argument in
torch.tensor_split().
Example:
>>>t=torch.arange(16.0).reshape(2,2,4)>>>ttensor([[[ 0., 1., 2., 3.], [ 4., 5., 6., 7.]], [[ 8., 9., 10., 11.], [12., 13., 14., 15.]]])>>>torch.dsplit(t,2)(tensor([[[ 0., 1.], [ 4., 5.]], [[ 8., 9.], [12., 13.]]]), tensor([[[ 2., 3.], [ 6., 7.]], [[10., 11.], [14., 15.]]]))>>>torch.dsplit(t,[3,6])(tensor([[[ 0., 1., 2.], [ 4., 5., 6.]], [[ 8., 9., 10.], [12., 13., 14.]]]), tensor([[[ 3.], [ 7.]], [[11.], [15.]]]), tensor([], size=(2, 2, 0)))