torch.baddbmm#
- torch.baddbmm(input,batch1,batch2,out_dtype=None,*,beta=1,alpha=1,out=None)→Tensor#
Performs a batch matrix-matrix product of matrices in
batch1andbatch2.inputis added to the final result.batch1andbatch2must be 3-D tensors each containing the samenumber of matrices.If
batch1is a tensor,batch2is a tensor, theninputmust bebroadcastable with a tensor andoutwill be a tensor. Bothalphaandbetamean thesame as the scaling factors used intorch.addbmm().If
betais 0, then the content ofinputwill be ignored, andnan andinf init will not be propagated.For inputs of typeFloatTensor orDoubleTensor, arguments
betaandalphamust be real numbers, otherwise they should be integers.This operator supportsTensorFloat32.
On certain ROCm devices, when using float16 inputs this module will usedifferent precision for backward.
- Parameters
input (Tensor) – the tensor to be added
batch1 (Tensor) – the first batch of matrices to be multiplied
batch2 (Tensor) – the second batch of matrices to be multiplied
out_dtype (dtype,optional) – the dtype of the output tensor,Supported only on CUDA and for torch.float32 giventorch.float16/torch.bfloat16 input dtypes
- Keyword Arguments
beta (Number,optional) – multiplier for
input()alpha (Number,optional) – multiplier for ()
out (Tensor,optional) – the output tensor.
Example:
>>>M=torch.randn(10,3,5)>>>batch1=torch.randn(10,3,4)>>>batch2=torch.randn(10,4,5)>>>torch.baddbmm(M,batch1,batch2).size()torch.Size([10, 3, 5])