torch.arange#
- torch.arange(start=0,end,step=1,*,out=None,dtype=None,layout=torch.strided,device=None,requires_grad=False)→Tensor#
Returns a 1-D tensor of sizewith values from the interval
[start,end)taken with common differencestepbeginning fromstart.Note: When using floating-point dtypes (especially reduced precision types like
bfloat16),the results may be affected by floating-point rounding behavior. Some values in the sequencemight not be exactly representable in certain floating-point formats, which can lead torepeated values or unexpected rounding. For precise sequences, it is recommended to useinteger dtypes instead of floating-point dtypes.Note that non-integer
stepis subject to floating point rounding errors whencomparing againstend; to avoid inconsistency, we advise subtracting a small epsilon fromendin such cases.- Parameters
start (Number,optional) – the starting value for the set of points. Default:
0.end (Number) – the ending value for the set of points
step (Number,optional) – the gap between each pair of adjacent points. Default:
1.
- Keyword Arguments
out (Tensor,optional) – the output tensor.
dtype (
torch.dtype, optional) – the desired data type of returned tensor.Default: ifNone, uses a global default (seetorch.set_default_dtype()). Ifdtype is not given, infer the data type from the other inputarguments. If any ofstart,end, orstop are floating-point, thedtype is inferred to be the default dtype, seeget_default_dtype(). Otherwise, thedtype is inferred tobetorch.int64.layout (
torch.layout, optional) – the desired layout of returned Tensor.Default:torch.strided.device (
torch.device, optional) – the desired device of returned tensor.Default: ifNone, uses the current device for the default tensor type(seetorch.set_default_device()).devicewill be the CPUfor CPU tensor types and the current CUDA device for CUDA tensor types.requires_grad (bool,optional) – If autograd should record operations on thereturned tensor. Default:
False.
Example:
>>>torch.arange(5)tensor([ 0, 1, 2, 3, 4])>>>torch.arange(1,4)tensor([ 1, 2, 3])>>>torch.arange(1,2.5,0.5)tensor([ 1.0000, 1.5000, 2.0000])