Rate this Page

avg_pool2d#

classtorch.ao.nn.quantized.functional.avg_pool2d(input,kernel_size,stride=None,padding=0,ceil_mode=False,count_include_pad=True,divisor_override=None)[source]#

Applies 2D average-pooling operation inkH×kWkH \times kW regions by step sizesH×sWsH \times sW steps. The number of output features is equal to the number ofinput planes.

Note

The input quantization parameters propagate to the output.

SeeAvgPool2d for details and output shape.

Parameters
  • input – quantized input tensor(minibatch,in_channels,iH,iW)(\text{minibatch} , \text{in\_channels} , iH , iW)

  • kernel_size – size of the pooling region. Can be a single number or atuple(kH, kW)

  • stride – stride of the pooling operation. Can be a single number or atuple(sH, sW). Default:kernel_size

  • padding – implicit zero paddings on both sides of the input. Can be asingle number or a tuple(padH, padW). Default: 0

  • ceil_mode – when True, will useceil instead offloor in the formulato compute the output shape. Default:False

  • count_include_pad – when True, will include the zero-padding in theaveraging calculation. Default:True

  • divisor_override – if specified, it will be used as divisor, otherwisesize of the pooling region will be used. Default: None