avg_pool2d#
- classtorch.ao.nn.quantized.functional.avg_pool2d(input,kernel_size,stride=None,padding=0,ceil_mode=False,count_include_pad=True,divisor_override=None)[source]#
Applies 2D average-pooling operation in regions by step size steps. The number of output features is equal to the number ofinput planes.
Note
The input quantization parameters propagate to the output.
See
AvgPool2dfor details and output shape.- Parameters
input – quantized input tensor
kernel_size – size of the pooling region. Can be a single number or atuple(kH, kW)
stride – stride of the pooling operation. Can be a single number or atuple(sH, sW). Default:
kernel_sizepadding – implicit zero paddings on both sides of the input. Can be asingle number or a tuple(padH, padW). Default: 0
ceil_mode – when True, will useceil instead offloor in the formulato compute the output shape. Default:
Falsecount_include_pad – when True, will include the zero-padding in theaveraging calculation. Default:
Truedivisor_override – if specified, it will be used as divisor, otherwisesize of the pooling region will be used. Default: None