torch.cholesky_solve#
- torch.cholesky_solve(B,L,upper=False,*,out=None)→Tensor#
Computes the solution of a system of linear equations with complex Hermitianor real symmetric positive-definite lhs given its Cholesky decomposition.
Let be a complex Hermitian or real symmetric positive-definite matrix,and its Cholesky decomposition such that:
where is the conjugate transpose when is complex,and the transpose when is real-valued.
Returns the solution of the following linear system:
Supports inputs of float, double, cfloat and cdouble dtypes.Also supports batches of matrices, and if or is a batch of matricesthen the output has the same batch dimensions.
- Parameters
B (Tensor) – right-hand side tensor of shape(*, n, k)where is zero or more batch dimensions
L (Tensor) – tensor of shape(*, n, n) where* is zero or more batch dimensionsconsisting of lower or upper triangular Cholesky decompositions ofsymmetric or Hermitian positive-definite matrices.
upper (bool,optional) – flag that indicates whether is lower triangularor upper triangular. Default:
False.
- Keyword Arguments
out (Tensor,optional) – output tensor. Ignored ifNone. Default:None.
Example:
>>>A=torch.randn(3,3)>>>A=A@A.T+torch.eye(3)*1e-3# Creates a symmetric positive-definite matrix>>>L=torch.linalg.cholesky(A)# Extract Cholesky decomposition>>>B=torch.randn(3,2)>>>torch.cholesky_solve(B,L)tensor([[ -8.1625, 19.6097], [ -5.8398, 14.2387], [ -4.3771, 10.4173]])>>>A.inverse()@Btensor([[ -8.1626, 19.6097], [ -5.8398, 14.2387], [ -4.3771, 10.4173]])>>>A=torch.randn(3,2,2,dtype=torch.complex64)>>>A=A@A.mH+torch.eye(2)*1e-3# Batch of Hermitian positive-definite matrices>>>L=torch.linalg.cholesky(A)>>>B=torch.randn(2,1,dtype=torch.complex64)>>>X=torch.cholesky_solve(B,L)>>>torch.dist(X,A.inverse()@B)tensor(1.6881e-5)