torch.transpose#
- torch.transpose(input,dim0,dim1)→Tensor#
Returns a tensor that is a transposed version of
input.The given dimensionsdim0anddim1are swapped.If
inputis a strided tensor then the resultingouttensor shares its underlying storage with theinputtensor, sochanging the content of one would change the content of the other.If
inputis asparse tensor then theresultingouttensordoes not share the underlying storagewith theinputtensor.If
inputis asparse tensor with compressedlayout (SparseCSR, SparseBSR, SparseCSC or SparseBSC) the argumentsdim0anddim1must be both batch dimensions, or mustboth be sparse dimensions. The batch dimensions of a sparse tensor are thedimensions preceding the sparse dimensions.Note
Transpositions which interchange the sparse dimensions of aSparseCSRorSparseCSC layout tensor will result in the layout changing betweenthe two options. Transposition of the sparse dimensions of a ` SparseBSR`orSparseBSC layout tensor will likewise generate a result with theopposite layout.
- Parameters
Example:
>>>x=torch.randn(2,3)>>>xtensor([[ 1.0028, -0.9893, 0.5809], [-0.1669, 0.7299, 0.4942]])>>>torch.transpose(x,0,1)tensor([[ 1.0028, -0.1669], [-0.9893, 0.7299], [ 0.5809, 0.4942]])
See also
torch.t().