torch.stft#
- torch.stft(input,n_fft,hop_length=None,win_length=None,window=None,center=True,pad_mode='reflect',normalized=False,onesided=None,return_complex=None,align_to_window=None)[source]#
Short-time Fourier transform (STFT).
Warning
From version 1.8.0,
return_complexmust always be givenexplicitly for real inputs andreturn_complex=False has beendeprecated. Strongly preferreturn_complex=True as in a futurepytorch release, this function will only return complex tensors.Note that
torch.view_as_real()can be used to recover a realtensor with an extra last dimension for real and imaginary components.Warning
From version 2.1, a warning will be provided if a
windowisnot specified. In a future release, this attribute will be required.Not providing a window currently defaults to using a rectangular window,which may result in undesirable artifacts. Consider using tapered windows,such astorch.hann_window().The STFT computes the Fourier transform of short overlapping windows of theinput. This giving frequency components of the signal as they change overtime. The interface of this function is modeled after (butnot a drop-inreplacement for)librosa stft function.
Ignoring the optional batch dimension, this method computes the followingexpression:
where is the index of the sliding window, and isthe frequency for
onesided=False,or foronesided=True.inputmust be either a 1-D time sequence or a 2-D batch of timesequences.If
hop_lengthisNone(default), it is treated as equal tofloor(n_fft/4).If
win_lengthisNone(default), it is treated as equal ton_fft.windowcan be a 1-D tensor of sizewin_length, e.g., fromtorch.hann_window(). IfwindowisNone(default), it istreated as if having everywhere in the window. If,windowwill be padded onboth sides to lengthn_fftbefore being applied.If
centerisTrue(default),inputwill be padded onboth sides so that the-th frame is centered at time. Otherwise, the-th framebegins at time.pad_modedetermines the padding method used oninputwhencenterisTrue. Seetorch.nn.functional.pad()forall available options. Default is"reflect".If
onesidedisTrue(default for real input), only values for in are returned becausethe real-to-complex Fourier transform satisfies the conjugate symmetry,i.e.,.Note if the input or window tensors are complex, thenonesidedoutput is not possible.If
normalizedisTrue(default isFalse), the functionreturns the normalized STFT results, i.e., multiplied by.If
return_complexisTrue(default if input is complex), thereturn is ainput.dim()+1dimensional complex tensor. IfFalse,the output is ainput.dim()+2dimensional real tensor where the lastdimension represents the real and imaginary components.
Returns either a complex tensor of size if
return_complexis true, or a real tensor of size. Where is the optional batch size ofinput, is the number of frequencies where STFT is appliedand is the total number of frames used.Warning
This function changed signature at version 0.4.1. Calling with theprevious signature may cause error or return incorrect result.
- Parameters
input (Tensor) – the input tensor of shape(B?, L) whereB? is an optionalbatch dimension
n_fft (int) – size of Fourier transform
hop_length (int,optional) – the distance between neighboring sliding windowframes. Default:
None(treated as equal tofloor(n_fft/4))win_length (int,optional) – the size of window frame and STFT filter.Default:
None(treated as equal ton_fft)window (Tensor,optional) – the optional window function.Shape must be 1d and<= n_fftDefault:
None(treated as window of all s)center (bool,optional) – whether to pad
inputon both sides sothat the-th frame is centered at time.Default:Truepad_mode (str,optional) – controls the padding method used when
centerisTrue. Default:"reflect"normalized (bool,optional) – controls whether to return the normalized STFT resultsDefault:
Falseonesided (bool,optional) – controls whether to return half of results toavoid redundancy for real inputs.Default:
Truefor realinputandwindow,Falseotherwise.return_complex (bool,optional) –
whether to return a complex tensor, ora real tensor with an extra last dimension for the real andimaginary components.
Changed in version 2.0:
return_complexis now a required argument for real inputs,as the default is being transitioned toTrue.Deprecated since version 2.0:
return_complex=Falseis deprecated, instead usereturn_complex=TrueNote that callingtorch.view_as_real()on the output willrecover the deprecated output format.
- Returns
- A tensor containing the STFT result with shape(B?, N, T, C?) where
B? is an optional batch dimension from the input.
N is the number of frequency samples,(n_fft // 2) + 1 foronesided=True, or otherwisen_fft.
T is the number of frames,1 + L // hop_lengthforcenter=True, or1 + (L - n_fft) // hop_length otherwise.
C? is an optional length-2 dimension of real and imaginarycomponents, present whenreturn_complex=False.
- Return type