torch.range#
- torch.range(start=0,end,step=1,*,out=None,dtype=None,layout=torch.strided,device=None,requires_grad=False)→Tensor#
Returns a 1-D tensor of sizewith values from
starttoendwith stepstep. Step isthe gap between two values in the tensor.Warning
This function is deprecated and will be removed in a future release because its behavior is inconsistent withPython’s range builtin. Instead, use
torch.arange(), which produces values in [start, end).- Parameters
- Keyword Arguments
out (Tensor,optional) – the output tensor.
dtype (
torch.dtype, optional) – the desired data type of returned tensor.Default: ifNone, uses a global default (seetorch.set_default_dtype()). Ifdtype is not given, infer the data type from the other inputarguments. If any ofstart,end, orstep are floating-point, thedtype is inferred to be the default dtype, seeget_default_dtype(). Otherwise, thedtype is inferred tobetorch.int64.layout (
torch.layout, optional) – the desired layout of returned Tensor.Default:torch.strided.device (
torch.device, optional) – the desired device of returned tensor.Default: ifNone, uses the current device for the default tensor type(seetorch.set_default_device()).devicewill be the CPUfor CPU tensor types and the current CUDA device for CUDA tensor types.requires_grad (bool,optional) – If autograd should record operations on thereturned tensor. Default:
False.
Example:
>>>torch.range(1,4)tensor([ 1., 2., 3., 4.])>>>torch.range(1,4,0.5)tensor([ 1.0000, 1.5000, 2.0000, 2.5000, 3.0000, 3.5000, 4.0000])