torch.linalg.qr#
- torch.linalg.qr(A,mode='reduced',*,out=None)#
Computes the QR decomposition of a matrix.
Letting be or,thefull QR decomposition of a matrix is defined as
where is orthogonal in the real case and unitary in the complex case,and is upper triangular with real diagonal (even in the complex case).
Whenm > n (tall matrix), asR is upper triangular, its lastm - n rows are zero.In this case, we can drop the lastm - n columns ofQ to form thereduced QR decomposition:
The reduced QR decomposition agrees with the full QR decomposition whenn >= m (wide matrix).
Supports input of float, double, cfloat and cdouble dtypes.Also supports batches of matrices, and if
Ais a batch of matrices thenthe output has the same batch dimensions.The parameter
modechooses between the full and reduced QR decomposition.IfAhas shape(*, m, n), denotingk = min(m, n)mode= ‘reduced’ (default): Returns(Q, R) of shapes(*, m, k),(*, k, n) respectively.It is always differentiable.mode= ‘complete’: Returns(Q, R) of shapes(*, m, m),(*, m, n) respectively.It is differentiable form <= n.mode= ‘r’: Computes only the reducedR. Returns(Q, R) withQ empty andR of shape(*, k, n).It is never differentiable.
Differences withnumpy.linalg.qr:
mode= ‘raw’ is not implemented.Unlikenumpy.linalg.qr, this function always returns a tuple of two tensors.When
mode= ‘r’, theQ tensor is an empty tensor.
Warning
The elements in the diagonal ofR are not necessarily positive.As such, the returned QR decomposition is only unique up to the sign of the diagonal ofR.Therefore, different platforms, like NumPy, or inputs on different devices,may produce different valid decompositions.
Warning
The QR decomposition is only well-defined if the firstk = min(m, n) columnsof every matrix in
Aare linearly independent.If this condition is not met, no error will be thrown, but the QR producedmay be incorrect and its autodiff may fail or produce incorrect results.- Parameters
- Keyword Arguments
out (tuple,optional) – output tuple of two tensors. Ignored ifNone. Default:None.
- Returns
A named tuple(Q, R).
Examples:
>>>A=torch.tensor([[12.,-51,4],[6,167,-68],[-4,24,-41]])>>>Q,R=torch.linalg.qr(A)>>>Qtensor([[-0.8571, 0.3943, 0.3314], [-0.4286, -0.9029, -0.0343], [ 0.2857, -0.1714, 0.9429]])>>>Rtensor([[ -14.0000, -21.0000, 14.0000], [ 0.0000, -175.0000, 70.0000], [ 0.0000, 0.0000, -35.0000]])>>>(Q@R).round()tensor([[ 12., -51., 4.], [ 6., 167., -68.], [ -4., 24., -41.]])>>>(Q.T@Q).round()tensor([[ 1., 0., 0.], [ 0., 1., -0.], [ 0., -0., 1.]])>>>Q2,R2=torch.linalg.qr(A,mode='r')>>>Q2tensor([])>>>torch.equal(R,R2)True>>>A=torch.randn(3,4,5)>>>Q,R=torch.linalg.qr(A,mode='complete')>>>torch.dist(Q@R,A)tensor(1.6099e-06)>>>torch.dist(Q.mT@Q,torch.eye(4))tensor(6.2158e-07)