torch.hsplit#
- torch.hsplit(input,indices_or_sections)→ListofTensors#
Splits
input, a tensor with one or more dimensions, into multiple tensorshorizontally according toindices_or_sections. Each split is a view ofinput.If
inputis one dimensional this is equivalent to callingtorch.tensor_split(input, indices_or_sections, dim=0) (the split dimension iszero), and ifinputhas two or more dimensions it’s equivalent to callingtorch.tensor_split(input, indices_or_sections, dim=1) (the split dimension is 1),except that ifindices_or_sectionsis an integer it must evenly dividethe split dimension or a runtime error will be thrown.This function is based on NumPy’s
numpy.hsplit().- Parameters
input (Tensor) – tensor to split.
indices_or_sections (int orlist ortuple ofints) – See argument in
torch.tensor_split().
Example:
>>>t=torch.arange(16.0).reshape(4,4)>>>ttensor([[ 0., 1., 2., 3.], [ 4., 5., 6., 7.], [ 8., 9., 10., 11.], [12., 13., 14., 15.]])>>>torch.hsplit(t,2)(tensor([[ 0., 1.], [ 4., 5.], [ 8., 9.], [12., 13.]]), tensor([[ 2., 3.], [ 6., 7.], [10., 11.], [14., 15.]]))>>>torch.hsplit(t,[3,6])(tensor([[ 0., 1., 2.], [ 4., 5., 6.], [ 8., 9., 10.], [12., 13., 14.]]), tensor([[ 3.], [ 7.], [11.], [15.]]), tensor([], size=(4, 0)))