Linear#
- classtorch.ao.nn.quantized.Linear(in_features,out_features,bias_=True,dtype=torch.qint8)[source]#
A quantized linear module with quantized tensor as inputs and outputs.We adopt the same interface astorch.nn.Linear, please seehttps://pytorch.org/docs/stable/nn.html#torch.nn.Linear for documentation.
Similar to
Linear, attributes will be randomlyinitialized at module creation time and will be overwritten later- Variables
weight (Tensor) – the non-learnable quantized weights of the module ofshape.
bias (Tensor) – the non-learnable bias of the module of shape.If
biasisTrue, the values are initialized to zero.scale –scale parameter of output Quantized Tensor, type: double
zero_point –zero_point parameter for output Quantized Tensor, type: long
Examples:
>>>m=nn.quantized.Linear(20,30)>>>input=torch.randn(128,20)>>>input=torch.quantize_per_tensor(input,1.0,0,torch.quint8)>>>output=m(input)>>>print(output.size())torch.Size([128, 30])
- classmethodfrom_float(mod,use_precomputed_fake_quant=False)[source]#
Create a quantized module from an observed float module