torch.mm#
- torch.mm(input,mat2,out_dtype=None,*,out=None)→Tensor#
Performs a matrix multiplication of the matrices
inputandmat2.If
inputis a tensor,mat2is a tensor,outwill be a tensor.Note
This function does notbroadcast.For broadcasting matrix products, see
torch.matmul().Supports strided and sparse 2-D tensors as inputs, autograd withrespect to strided inputs.
This operation has support for arguments withsparse layouts.If
outis provided its layout will be used. Otherwise, the resultlayout will be deduced from that ofinput.Warning
Sparse support is a beta feature and some layout(s)/dtype/device combinations may not be supported,or may not have autograd support. If you notice missing functionality pleaseopen a feature request.
This operator supportsTensorFloat32.
On certain ROCm devices, when using float16 inputs this module will usedifferent precision for backward.
- Parameters
- Keyword Arguments
out (Tensor,optional) – the output tensor.
Example:
>>>mat1=torch.randn(2,3)>>>mat2=torch.randn(3,3)>>>torch.mm(mat1,mat2)tensor([[ 0.4851, 0.5037, -0.3633], [-0.0760, -3.6705, 2.4784]])