torch.pow#
- torch.pow(input,exponent,*,out=None)→Tensor#
Takes the power of each element in
inputwithexponentandreturns a tensor with the result.exponentcan be either a singlefloatnumber or aTensorwith the same number of elements asinput.When
exponentis a scalar value, the operation applied is:When
exponentis a tensor, the operation applied is:When
exponentis a tensor, the shapes ofinputandexponentmust bebroadcastable.- Parameters
- Keyword Arguments
out (Tensor,optional) – the output tensor.
Example:
>>>a=torch.randn(4)>>>atensor([ 0.4331, 1.2475, 0.6834, -0.2791])>>>torch.pow(a,2)tensor([ 0.1875, 1.5561, 0.4670, 0.0779])>>>exp=torch.arange(1.,5.)>>>a=torch.arange(1.,5.)>>>atensor([ 1., 2., 3., 4.])>>>exptensor([ 1., 2., 3., 4.])>>>torch.pow(a,exp)tensor([ 1., 4., 27., 256.])
- torch.pow(self,exponent,*,out=None)→Tensor
selfis a scalarfloatvalue, andexponentis a tensor.The returned tensoroutis of the same shape asexponentThe operation applied is:
- Parameters
- Keyword Arguments
out (Tensor,optional) – the output tensor.
Example:
>>>exp=torch.arange(1.,5.)>>>base=2>>>torch.pow(base,exp)tensor([ 2., 4., 8., 16.])