torch.mean#
- torch.mean(input,*,dtype=None)→Tensor#
Note
If theinput tensor is empty,
torch.mean()returnsnan.This behavior is consistent with NumPy and follows the definitionthat the mean over an empty set is undefined.Returns the mean value of all elements in the
inputtensor. Input must be floating point or complex.- Parameters:
input (Tensor) – the input tensor, either of floating point or complex dtype
- Keyword Arguments:
dtype (
torch.dtype, optional) – the desired data type of returned tensor.If specified, the input tensor is casted todtypebefore the operationis performed. This is useful for preventing data type overflows. Default: None.
Example:
>>>a=torch.randn(1,3)>>>atensor([[ 0.2294, -0.5481, 1.3288]])>>>torch.mean(a)tensor(0.3367)
- torch.mean(input,dim,keepdim=False,*,dtype=None,out=None)→Tensor
Returns the mean value of each row of the
inputtensor in the givendimensiondim. Ifdimis a list of dimensions,reduce over all of them.If
keepdimisTrue, the output tensor is of the same sizeasinputexcept in the dimension(s)dimwhere it is of size 1.Otherwise,dimis squeezed (seetorch.squeeze()), resulting in theoutput tensor having 1 (orlen(dim)) fewer dimension(s).- Parameters:
- Keyword Arguments:
dtype (
torch.dtype, optional) – the desired data type of returned tensor.If specified, the input tensor is casted todtypebefore the operationis performed. This is useful for preventing data type overflows. Default: None.out (Tensor,optional) – the output tensor.
See also
torch.nanmean()computes the mean value ofnon-NaN elements.Example:
>>>a=torch.randn(4,4)>>>atensor([[-0.3841, 0.6320, 0.4254, -0.7384], [-0.9644, 1.0131, -0.6549, -1.4279], [-0.2951, -1.3350, -0.7694, 0.5600], [ 1.0842, -0.9580, 0.3623, 0.2343]])>>>torch.mean(a,1)tensor([-0.0163, -0.5085, -0.4599, 0.1807])>>>torch.mean(a,1,True)tensor([[-0.0163], [-0.5085], [-0.4599], [ 0.1807]])