torch.fft.ifft#
- torch.fft.ifft(input,n=None,dim=-1,norm=None,*,out=None)→Tensor#
Computes the one dimensional inverse discrete Fourier transform of
input.Note
Supports torch.half and torch.chalf on CUDA with GPU Architecture SM53 or greater.However it only supports powers of 2 signal length in every transformed dimension.
- Parameters:
input (Tensor) – the input tensor
n (int,optional) – Signal length. If given, the input will either be zero-paddedor trimmed to this length before computing the IFFT.
dim (int,optional) – The dimension along which to take the one dimensional IFFT.
norm (str,optional) –
Normalization mode. For the backward transform(
ifft()), these correspond to:"forward"- no normalization"backward"- normalize by1/n"ortho"- normalize by1/sqrt(n)(making the IFFT orthonormal)
Calling the forward transform (
fft()) with the samenormalization mode will apply an overall normalization of1/nbetweenthe two transforms. This is required to makeifft()the exact inverse.Default is
"backward"(normalize by1/n).
- Keyword Arguments:
out (Tensor,optional) – the output tensor.
Example
>>>t=torch.tensor([6.+0.j,-2.+2.j,-2.+0.j,-2.-2.j])>>>torch.fft.ifft(t)tensor([0.+0.j, 1.+0.j, 2.+0.j, 3.+0.j])