torch.profiler#
Created On: Dec 18, 2020 | Last Updated On: Jun 13, 2025
Overview#
PyTorch Profiler is a tool that allows the collection of performance metrics during training and inference.Profiler’s context manager API can be used to better understand what model operators are the most expensive,examine their input shapes and stack traces, study device kernel activity and visualize the execution trace.
Note
An earlier version of the API intorch.autograd module is considered legacy and will be deprecated.
API Reference#
- classtorch.profiler._KinetoProfile(*,activities=None,record_shapes=False,profile_memory=False,with_stack=False,with_flops=False,with_modules=False,experimental_config=None,execution_trace_observer=None,acc_events=False,custom_trace_id_callback=None)[source]#
Low-level profiler wrap the autograd profile
- Parameters:
activities (iterable) – list of activity groups (CPU, CUDA) to use in profiling, supported values:
torch.profiler.ProfilerActivity.CPU,torch.profiler.ProfilerActivity.CUDA,torch.profiler.ProfilerActivity.XPU.Default value: ProfilerActivity.CPU and (when available) ProfilerActivity.CUDAor (when available) ProfilerActivity.XPU.record_shapes (bool) – save information about operator’s input shapes.
profile_memory (bool) – track tensor memory allocation/deallocation (see
export_memory_timelinefor more details).with_stack (bool) – record source information (file and line number) for the ops.
with_flops (bool) – use formula to estimate the FLOPS of specific operators(matrix multiplication and 2D convolution).
with_modules (bool) – record module hierarchy (including function names)corresponding to the callstack of the op. e.g. If module A’s forward call’smodule B’s forward which contains an aten::add op,then aten::add’s module hierarchy is A.BNote that this support exist, at the moment, only for TorchScript modelsand not eager mode models.
experimental_config (_ExperimentalConfig) – A set of experimental optionsused by profiler libraries like Kineto. Note, backward compatibility is not guaranteed.
execution_trace_observer (ExecutionTraceObserver) – A PyTorch Execution Trace Observer object.PyTorch Execution Traces offer a graph basedrepresentation of AI/ML workloads and enable replay benchmarks, simulators, and emulators.When this argument is included the observer start() and stop() will be called for thesame time window as PyTorch profiler.
acc_events (bool) – Enable the accumulation of FunctionEvents across multiple profiling cycles
Note
This API is experimental and subject to change in the future.
Enabling shape and stack tracing results in additional overhead.When record_shapes=True is specified, profiler will temporarily hold references to the tensors;that may further prevent certain optimizations that depend on the reference count and introduceextra tensor copies.
- add_metadata(key,value)[source]#
Adds a user defined metadata with a string key and a string valueinto the trace file
- add_metadata_json(key,value)[source]#
Adds a user defined metadata with a string key and a valid json valueinto the trace file
- events()[source]#
Returns the list of unaggregated profiler events,to be used in the trace callback or after the profiling is finished
- export_chrome_trace(path)[source]#
Exports the collected trace in Chrome JSON format. If kineto is enabled, onlylast cycle in schedule is exported.
- export_memory_timeline(path,device=None)[source]#
Export memory event information from the profiler collectedtree for a given device, and export a timeline plot. There are 3exportable files using
export_memory_timeline, each controlled by thepath’s suffix.For an HTML compatible plot, use the suffix
.html, and a memory timelineplot will be embedded as a PNG file in the HTML file.For plot points consisting of
[times,[sizesbycategory]], wheretimesare timestamps andsizesare memory usage for each category.The memory timeline plot will be saved a JSON (.json) or gzipped JSON(.json.gz) depending on the suffix.For raw memory points, use the suffix
.raw.json.gz. Each raw memoryevent will consist of(timestamp,action,numbytes,category), whereactionis one of[PREEXISTING,CREATE,INCREMENT_VERSION,DESTROY],andcategoryis one of the enums fromtorch.profiler._memory_profiler.Category.
Output: Memory timeline written as gzipped JSON, JSON, or HTML.
Deprecated since version ``export_memory_timeline``:is deprecated and will be removed in a future version.Please use
torch.cuda.memory._record_memory_historyandtorch.cuda.memory._export_memory_snapshotinstead.
- key_averages(group_by_input_shape=False,group_by_stack_n=0,group_by_overload_name=False)[source]#
Averages events, grouping them by operator name and (optionally) input shapes, stackand overload name.
Note
To use shape/stack functionality make sure to set record_shapes/with_stackwhen creating profiler context manager.
- preset_metadata_json(key,value)[source]#
Preset a user defined metadata when the profiler is not startedand added into the trace file later.Metadata is in the format of a string key and a valid json value
- toggle_collection_dynamic(enable,activities)[source]#
Toggle collection of activities on/off at any point of collection. Currently supports toggling Torch Ops(CPU) and CUDA activity supported in Kineto
- Parameters:
activities (iterable) – list of activity groups to use in profiling, supported values:
torch.profiler.ProfilerActivity.CPU,torch.profiler.ProfilerActivity.CUDA
Examples:
withtorch.profiler.profile(activities=[torch.profiler.ProfilerActivity.CPU,torch.profiler.ProfilerActivity.CUDA,])asp:code_to_profile_0()//turnoffcollectionofallCUDAactivityp.toggle_collection_dynamic(False,[torch.profiler.ProfilerActivity.CUDA])code_to_profile_1()//turnoncollectionofallCUDAactivityp.toggle_collection_dynamic(True,[torch.profiler.ProfilerActivity.CUDA])code_to_profile_2()print(p.key_averages().table(sort_by="self_cuda_time_total",row_limit=-1))
- classtorch.profiler.profile(*,activities=None,schedule=None,on_trace_ready=None,record_shapes=False,profile_memory=False,with_stack=False,with_flops=False,with_modules=False,experimental_config=None,execution_trace_observer=None,acc_events=False,use_cuda=None,custom_trace_id_callback=None)[source]#
Profiler context manager.
- Parameters:
activities (iterable) – list of activity groups (CPU, CUDA) to use in profiling, supported values:
torch.profiler.ProfilerActivity.CPU,torch.profiler.ProfilerActivity.CUDA,torch.profiler.ProfilerActivity.XPU.Default value: ProfilerActivity.CPU and (when available) ProfilerActivity.CUDAor (when available) ProfilerActivity.XPU.schedule (Callable) – callable that takes step (int) as a single parameter and returns
ProfilerActionvalue that specifies the profiler action to perform at each step.on_trace_ready (Callable) – callable that is called at each step when
schedulereturnsProfilerAction.RECORD_AND_SAVEduring the profiling.record_shapes (bool) – save information about operator’s input shapes.
profile_memory (bool) – track tensor memory allocation/deallocation.
with_stack (bool) – record source information (file and line number) for the ops.
with_flops (bool) – use formula to estimate the FLOPs (floating point operations) of specific operators(matrix multiplication and 2D convolution).
with_modules (bool) – record module hierarchy (including function names)corresponding to the callstack of the op. e.g. If module A’s forward call’smodule B’s forward which contains an aten::add op,then aten::add’s module hierarchy is A.BNote that this support exist, at the moment, only for TorchScript modelsand not eager mode models.
experimental_config (_ExperimentalConfig) – A set of experimental optionsused for Kineto library features. Note, backward compatibility is not guaranteed.
execution_trace_observer (ExecutionTraceObserver) – A PyTorch Execution Trace Observer object.PyTorch Execution Traces offer a graph basedrepresentation of AI/ML workloads and enable replay benchmarks, simulators, and emulators.When this argument is included the observer start() and stop() will be called for thesame time window as PyTorch profiler. See the examples section below for a code sample.
acc_events (bool) – Enable the accumulation of FunctionEvents across multiple profiling cycles
use_cuda (bool) –
Deprecated since version 1.8.1:use
activitiesinstead.
Note
Use
schedule()to generate the callable schedule.Non-default schedules are useful when profiling long training jobsand allow the user to obtain multiple traces at the different iterationsof the training process.The default schedule simply records all the events continuously for theduration of the context manager.Note
Use
tensorboard_trace_handler()to generate result files for TensorBoard:on_trace_ready=torch.profiler.tensorboard_trace_handler(dir_name)After profiling, result files can be found in the specified directory. Use the command:
tensorboard--logdirdir_nameto see the results in TensorBoard.For more information, seePyTorch Profiler TensorBoard Plugin
Note
Enabling shape and stack tracing results in additional overhead.When record_shapes=True is specified, profiler will temporarily hold references to the tensors;that may further prevent certain optimizations that depend on the reference count and introduceextra tensor copies.
Examples:
withtorch.profiler.profile(activities=[torch.profiler.ProfilerActivity.CPU,torch.profiler.ProfilerActivity.CUDA,])asp:code_to_profile()print(p.key_averages().table(sort_by="self_cuda_time_total",row_limit=-1))
Using the profiler’s
schedule,on_trace_readyandstepfunctions:# Non-default profiler schedule allows user to turn profiler on and off# on different iterations of the training loop;# trace_handler is called every time a new trace becomes availabledeftrace_handler(prof):print(prof.key_averages().table(sort_by="self_cuda_time_total",row_limit=-1))# prof.export_chrome_trace("/tmp/test_trace_" + str(prof.step_num) + ".json")withtorch.profiler.profile(activities=[torch.profiler.ProfilerActivity.CPU,torch.profiler.ProfilerActivity.CUDA,],# In this example with wait=1, warmup=1, active=2, repeat=1,# profiler will skip the first step/iteration,# start warming up on the second, record# the third and the forth iterations,# after which the trace will become available# and on_trace_ready (when set) is called;# the cycle repeats starting with the next stepschedule=torch.profiler.schedule(wait=1,warmup=1,active=2,repeat=1),on_trace_ready=trace_handler,# on_trace_ready=torch.profiler.tensorboard_trace_handler('./log')# used when outputting for tensorboard)asp:foriterinrange(N):code_iteration_to_profile(iter)# send a signal to the profiler that the next iteration has startedp.step()
The following sample shows how to setup up an Execution Trace Observer (execution_trace_observer)
withtorch.profiler.profile(...execution_trace_observer=(ExecutionTraceObserver().register_callback("./execution_trace.json")),)asp:foriterinrange(N):code_iteration_to_profile(iter)p.step()
You can also refer to test_execution_trace_with_kineto() in tests/profiler/test_profiler.py.Note: One can also pass any object satisfying the _ITraceObserver interface.
- classtorch.profiler.ProfilerAction(value)[source]#
Profiler actions that can be taken at the specified intervals
- torch.profiler.schedule(*,wait,warmup,active,repeat=0,skip_first=0,skip_first_wait=0)[source]#
Returns a callable that can be used as profiler
scheduleargument. The profiler will skipthe firstskip_firststeps, then wait forwaitsteps, then do the warmup for the nextwarmupsteps,then do the active recording for the nextactivesteps and then repeat the cycle starting withwaitsteps.The optional number of cycles is specified with therepeatparameter, the zero value means thatthe cycles will continue until the profiling is finished.The
skip_first_waitparameter controls whether the firstwaitstage should be skipped.This can be useful if a user wants to wait longer thanskip_firstbetween cycles, but notfor the first profile. For example, ifskip_firstis 10 andwaitis 20, the first cycle willwait 10 + 20 = 30 steps before warmup ifskip_first_waitis zero, but will wait only 10steps ifskip_first_waitis non-zero. All subsequent cycles will then wait 20 steps between thelast active and warmup.- Return type:
- torch.profiler.tensorboard_trace_handler(dir_name,worker_name=None,use_gzip=False)[source]#
Outputs tracing files to directory of
dir_name, then that directory can bedirectly delivered to tensorboard as logdir.worker_nameshould be unique for each worker in distributed scenario,it will be set to ‘[hostname]_[pid]’ by default.
Intel Instrumentation and Tracing Technology APIs#
- torch.profiler.itt.mark(msg)[source]#
Describe an instantaneous event that occurred at some point.
- Parameters:
msg (str) – ASCII message to associate with the event.
- torch.profiler.itt.range_push(msg)[source]#
Pushes a range onto a stack of nested range span. Returns zero-baseddepth of the range that is started.
- Parameters:
msg (str) – ASCII message to associate with range
- torch.profiler.itt.range_pop()[source]#
Pops a range off of a stack of nested range spans. Returns thezero-based depth of the range that is ended.