torch.cholesky_inverse#
- torch.cholesky_inverse(L,upper=False,*,out=None)→Tensor#
Computes the inverse of a complex Hermitian or real symmetricpositive-definite matrix given its Cholesky decomposition.
Let be a complex Hermitian or real symmetric positive-definite matrix,and its Cholesky decomposition such that:
where is the conjugate transpose when is complex,and the transpose when is real-valued.
Computes the inverse matrix.
Supports input of float, double, cfloat and cdouble dtypes.Also supports batches of matrices, and if is a batch of matricesthen the output has the same batch dimensions.
- Parameters:
- Keyword Arguments:
out (Tensor,optional) – output tensor. Ignored ifNone. Default:None.
Example:
>>>A=torch.randn(3,3)>>>A=A@A.T+torch.eye(3)*1e-3# Creates a symmetric positive-definite matrix>>>L=torch.linalg.cholesky(A)# Extract Cholesky decomposition>>>torch.cholesky_inverse(L)tensor([[ 1.9314, 1.2251, -0.0889], [ 1.2251, 2.4439, 0.2122], [-0.0889, 0.2122, 0.1412]])>>>A.inverse()tensor([[ 1.9314, 1.2251, -0.0889], [ 1.2251, 2.4439, 0.2122], [-0.0889, 0.2122, 0.1412]])>>>A=torch.randn(3,2,2,dtype=torch.complex64)>>>A=A@A.mH+torch.eye(2)*1e-3# Batch of Hermitian positive-definite matrices>>>L=torch.linalg.cholesky(A)>>>torch.dist(torch.inverse(A),torch.cholesky_inverse(L))tensor(5.6358e-7)