torch.all#
- torch.all(input:Tensor,*,out=None)→Tensor#
Tests if all elements in
inputevaluate toTrue.Note
This function matches the behaviour of NumPy in returningoutput of dtypebool for all supported dtypes exceptuint8.Foruint8 the dtype of output isuint8 itself.
- Parameters:
input (Tensor) – the input tensor.
- Keyword Arguments:
out (Tensor,optional) – the output tensor.
Example:
>>>a=torch.rand(1,2).bool()>>>atensor([[False, True]], dtype=torch.bool)>>>torch.all(a)tensor(False, dtype=torch.bool)>>>a=torch.arange(0,3)>>>atensor([0, 1, 2])>>>torch.all(a)tensor(False)
- torch.all(input,dim,keepdim=False,*,out=None)→Tensor
For each row of
inputin the given dimensiondim,returnsTrue if all elements in the row evaluate toTrue andFalse otherwise.If
keepdimisTrue, the output tensor is of the same sizeasinputexcept in the dimension(s)dimwhere it is of size 1.Otherwise,dimis squeezed (seetorch.squeeze()), resulting in theoutput tensor having 1 (orlen(dim)) fewer dimension(s).- Parameters:
- Keyword Arguments:
out (Tensor,optional) – the output tensor.
Example:
>>>a=torch.rand(4,2).bool()>>>atensor([[True, True], [True, False], [True, True], [True, True]], dtype=torch.bool)>>>torch.all(a,dim=1)tensor([ True, False, True, True], dtype=torch.bool)>>>torch.all(a,dim=0)tensor([ True, False], dtype=torch.bool)