SobolEngine#
- classtorch.quasirandom.SobolEngine(dimension,scramble=False,seed=None)[source]#
The
torch.quasirandom.SobolEngineis an engine for generating(scrambled) Sobol sequences. Sobol sequences are an example of lowdiscrepancy quasi-random sequences.This implementation of an engine for Sobol sequences is capable ofsampling sequences up to a maximum dimension of 21201. It uses directionnumbers fromhttps://web.maths.unsw.edu.au/~fkuo/sobol/ obtained using thesearch criterion D(6) up to the dimension 21201. This is the recommendedchoice by the authors.
References
Art B. Owen. Scrambling Sobol and Niederreiter-Xing points.Journal of Complexity, 14(4):466-489, December 1998.
I. M. Sobol. The distribution of points in a cube and the accurateevaluation of integrals.Zh. Vychisl. Mat. i Mat. Phys., 7:784-802, 1967.
- Parameters
dimension (Int) – The dimensionality of the sequence to be drawn
scramble (bool,optional) – Setting this to
Truewill producescrambled Sobol sequences. Scrambling iscapable of producing better Sobolsequences. Default:False.seed (Int,optional) – This is the seed for the scrambling. The seedof the random number generator is set to this,if specified. Otherwise, it uses a random seed.Default:
None
Examples:
>>>soboleng=torch.quasirandom.SobolEngine(dimension=5)>>>soboleng.draw(3)tensor([[0.0000, 0.0000, 0.0000, 0.0000, 0.0000], [0.5000, 0.5000, 0.5000, 0.5000, 0.5000], [0.7500, 0.2500, 0.2500, 0.2500, 0.7500]])
- draw(n=1,out=None,dtype=None)[source]#
Function to draw a sequence of
npoints from a Sobol sequence.Note that the samples are dependent on the previous samples. The sizeof the result is.- Parameters
n (Int,optional) – The length of sequence of points to draw.Default: 1
out (Tensor,optional) – The output tensor
dtype (
torch.dtype, optional) – the desired data type of thereturned tensor.Default:None
- Return type
- draw_base2(m,out=None,dtype=None)[source]#
Function to draw a sequence of
2**mpoints from a Sobol sequence.Note that the samples are dependent on the previous samples. The sizeof the result is.- Parameters
m (Int) – The (base2) exponent of the number of points to draw.
out (Tensor,optional) – The output tensor
dtype (
torch.dtype, optional) – the desired data type of thereturned tensor.Default:None
- Return type