Rate this Page
★★★★★
PolynomialLR#
- classtorch.optim.lr_scheduler.PolynomialLR(optimizer,total_iters=5,power=1.0,last_epoch=-1)[source]#
Decays the learning rate of each parameter group using a polynomial function in the given total_iters.
When last_epoch=-1, sets initial lr as lr.
- Parameters
Example
>>># Assuming optimizer uses lr = 0.05 for all groups>>># lr = 0.0490 if epoch == 0>>># lr = 0.0481 if epoch == 1>>># lr = 0.0472 if epoch == 2>>># ...>>># lr = 0.0 if epoch >= 50>>>scheduler=PolynomialLR(optimizer,total_iters=50,power=0.9)>>>forepochinrange(100):>>>train(...)>>>validate(...)>>>scheduler.step()

- load_state_dict(state_dict)[source]#
Load the scheduler’s state.
- Parameters
state_dict (dict) – scheduler state. Should be an object returnedfrom a call to
state_dict().
On this page