GRUCell#
- classtorch.nn.modules.rnn.GRUCell(input_size,hidden_size,bias=True,device=None,dtype=None)[source]#
A gated recurrent unit (GRU) cell.
where is the sigmoid function, and is the Hadamard product.
- Parameters
- Inputs: input, hidden
input : tensor containing input features
hidden : tensor containing the initial hiddenstate for each element in the batch.Defaults to zero if not provided.
- Outputs: h’
h’ : tensor containing the next hidden statefor each element in the batch
- Shape:
input: or tensor containing input features where =input_size.
hidden: or tensor containing the initial hiddenstate where =hidden_size. Defaults to zero if not provided.
output: or tensor containing the next hidden state.
- Variables
weight_ih (torch.Tensor) – the learnable input-hidden weights, of shape(3*hidden_size, input_size)
weight_hh (torch.Tensor) – the learnable hidden-hidden weights, of shape(3*hidden_size, hidden_size)
bias_ih – the learnable input-hidden bias, of shape(3*hidden_size)
bias_hh – the learnable hidden-hidden bias, of shape(3*hidden_size)
Note
All the weights and biases are initialized fromwhere
On certain ROCm devices, when using float16 inputs this module will usedifferent precision for backward.
Examples:
>>>rnn=nn.GRUCell(10,20)>>>input=torch.randn(6,3,10)>>>hx=torch.randn(3,20)>>>output=[]>>>foriinrange(6):...hx=rnn(input[i],hx)...output.append(hx)