Bilinear#
- classtorch.nn.modules.linear.Bilinear(in1_features,in2_features,out_features,bias=True,device=None,dtype=None)[source]#
Applies a bilinear transformation to the incoming data:.
- Parameters
- Shape:
Input1: where and means any number of additional dimensions including none. All but the last dimensionof the inputs should be the same.
Input2: where.
Output: whereand all but the last dimension are the same shape as the input.
- Variables
weight (torch.Tensor) – the learnable weights of the module of shape.The values are initialized from, where
bias – the learnable bias of the module of shape.If
biasisTrue, the values are initialized from, where
Examples:
>>>m=nn.Bilinear(20,30,40)>>>input1=torch.randn(128,20)>>>input2=torch.randn(128,30)>>>output=m(input1,input2)>>>print(output.size())torch.Size([128, 40])