Rate this Page

Softmin#

classtorch.nn.modules.activation.Softmin(dim=None)[source]#

Applies the Softmin function to an n-dimensional input Tensor.

Rescales them so that the elements of the n-dimensional output Tensorlie in the range[0, 1] and sum to 1.

Softmin is defined as:

Softmin(xi)=exp(xi)jexp(xj)\text{Softmin}(x_{i}) = \frac{\exp(-x_i)}{\sum_j \exp(-x_j)}
Shape:
  • Input:()(*) where* means, any number of additionaldimensions

  • Output:()(*), same shape as the input

Parameters

dim (int) – A dimension along which Softmin will be computed (so every slicealong dim will sum to 1).

Returns

a Tensor of the same dimension and shape as the input, withvalues in the range [0, 1]

Return type

None

Examples:

>>>m=nn.Softmin(dim=1)>>>input=torch.randn(2,3)>>>output=m(input)
extra_repr()[source]#

Return the extra representation of the module.

Return type

str

forward(input)[source]#

Runs the forward pass.

Return type

Tensor