Softmin#
- classtorch.nn.modules.activation.Softmin(dim=None)[source]#
Applies the Softmin function to an n-dimensional input Tensor.
Rescales them so that the elements of the n-dimensional output Tensorlie in the range[0, 1] and sum to 1.
Softmin is defined as:
- Shape:
Input: where* means, any number of additionaldimensions
Output:, same shape as the input
- Parameters
dim (int) – A dimension along which Softmin will be computed (so every slicealong dim will sum to 1).
- Returns
a Tensor of the same dimension and shape as the input, withvalues in the range [0, 1]
- Return type
None
Examples:
>>>m=nn.Softmin(dim=1)>>>input=torch.randn(2,3)>>>output=m(input)